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1 Introduction

1.1 Environmental science and dynamical systems
theory

Species that change biotic or abiotic materials and thereby affect the availab-
ility of resources to other species are referred to as “ecosystem engineers” in
ecology (Jones et al., 1994). Humans can be considered as the ultimate eco-
system engineer. Through changes in the biogeochemical cycles, land surface
transformations and climate change humans are globally affecting species
and, on a higher level, ecosystems. The affected ecosystems often provide
essential services, such as the regulation of climate, floods and diseases, and
the provision of food and fresh water (Reid et al., 2005). Understanding the
exact effect of human-induced changes in the environment on ecosystems
is of crucial importance and is currently one of the main challenges in the
field of environmental science (Miller, 2005). To obtain insights in the ef-
fects of human-induced environmental changes, there is a strong need for
environmental scientists to develop methods and tools that enable better
understanding of ecosystem dynamics.

Dynamical systems theory provides ways to study human-environment
interactions (Meadows, 2008) and the effect of (human-induced) environ-
mental changes on ecosystems in particular. Dynamical systems theory,
referred to as dynamical modelling or environmental modelling when applied
in environmental sciences, is a field in mathematics that uses differential and
difference equations to describe natural phenomena.

In this dissertation I will use dynamical systems theory to understand why
some ecosystems fail to cope with environmental change. In the following
sections I will first give an overview of the key insights gained by the applica-
tion of dynamical systems theory in the field of environmental science and
ecology in particular. I then identify current knowledge gaps and introduce
the research questions that I aim to answer. Finally, I will explain how these
questions apply to the particular type of ecosystem that will be the focus of
this dissertation.
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1 Introduction

1.2 Basic concepts and insights from dynamical
systems theory

1.2.1 Feedbacks, equilibrium states and stability

State variables are variables of a system that describe its state (e.g. nutrient
concentration, population density, soil water content). State variables are
influenced by fluxes (e.g. nutrient input, population growth, rainfall). The
dynamics of ecosystems are controlled by feedbacks, which occur when a state
variable affects its own fluxes, directly or through a loop of causal connections
and possibly involving other state variables. Negative feedbacks are balancing
and stabilizing, whereas positive feedbacks are reinforcing and destabilizing.
The effect of feedbacks can be explained with Figure 1.1, which is a graphical
representation of the logistic growth model (Verhulst, 1838). The population
size in this model increases when population growth is positive and decreases
when population growth is negative. In the model reproduction increases with
population size, resulting in a positive feedback, whereas crowding hampers
population growth at high population sizes, giving rise to a negative feedback.
The sign of the dominating feedback can be read from the slope of the growth
curve. If the slope is positive, then the positive feedback dominates, as an
increase in the population further enhances population growth. If the slope
of the growth curve is negative, then the negative feedback dominates, since
now an increase in the population diminishes the growth rate, and thereby
slows down further growth.

Systems are said to be in a (dynamic) equilibrium or steady state if, despite
flows through the system (e.g. growth and mortality), the state of a system
is unchanging. In Figure 1.1 these equilibrium states are located at the
intersections of the growth curve with the x-axis. An important property
of equilibrium states is their stability. Holling (1973, p. 17) defines it as
follows: “Stability is the ability of a system to return to an equilibrium state
after a temporary disturbance. The more rapidly it returns, and with the
least fluctuation, the more stable it is”. This definition does not specify the
magnitude of the temporary disturbance or perturbation. As we will see in the
next section, however, the ability of a system to return to an equilibrium state
can be affected by the magnitude of the perturbation. In this dissertation I
will therefore use a narrower (mathematical) definition of stability: the ability
of a system to return to an equilibrium state after a small perturbation.
When defined as such, stability can be derived mathematically through linear
stability analysis. Formally, this is done by perturbing an equilibrium state

2
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Figure 1.1: Example of a growth curve that can be used to get a qualitative understanding of
differential equations with one state variable. Depicted is the growth curve for the
logistic growth model (Verhulst, 1838). The closed dot is a stable equilibrium state
and the open dot is an unstable equilibrium state.

and deriving (the sign of) the growth rate of the perturbation. A quick way
to assess stability in the logistic growth model of Figure 1.1 is by reading
the slope of the growth curve at the equilibrium points. If the slope at
an equilibrium is negative, then negative feedbacks are dominant and the
equilibrium is stable (filled dot). If the slope at an equilibrium is positive,
then positive feedbacks are dominant and the equilibrium state is unstable
(open dot). For systems with more than one state variable the stability of
an equilibrium can be derived in a similar way using a so-called Jacobian
matrix.

1.2.2 Environmental change and critical transitions

Environmental conditions (e.g. rainfall or temperature) control fluxes in
ecosystems and thereby they affect the strength of the feedbacks that de-
termine the stability of equilibrium states. When, as a result of gradual
environmental change, positive feedbacks start to dictate the dynamics of
an equilibrium state then a critical transition occurs. A critical transition
is a shift of a system to a qualitatively different dynamical regime. Critical
transitions are analogous to bifurcations, a term used in dynamical systems
theory. However, in contrast to bifurcations, critical transitions include shifts
to alternative regimes that are caused by perturbations of the system’s state
instead of gradual external change. Different types of critical transitions can

3



1 Introduction

be distinguished depending on their reversibility and the type of dynamics
to which the system transitions. In the following I will discuss a selection of
the different types of critical transitions, and reflect on their implications for
ecosystem functioning.

1.2.2.1 Transitions to alternative equilibrium states

Critical transitions are either super- or subcritical. Supercritical transitions
are reversible, whereas subcritical transitions are discontinuous and require
disproportional efforts to reverse. Subcritical transitions between equilibrium
states are often referred to as catastrophic shifts (Scheffer et al., 2001).

Catastrophic shifts can be understood by plotting the equilibrium states
of a model as function of a parameter that represents the environmental
conditions. Figure 1.2 shows such so-called bifurcation diagram for the over-
harvesting model by Noy-Meir (1975), with plant biomass being the state
variable and grazing pressure the parameter of interest. The figure shows that,
when increasing the grazing pressure from I to II, the system obtains a second
stable equilibrium state; it becomes bistable. When increasing the grazing
pressure further, from II to III, positive feedbacks become dominant and a
catastrophic shift occurs from a vegetated state to a degraded overgrazed
bare state. Reversing this transition requires disproportional efforts because
lowering the grazing pressure back to II will not result in recovery of the
vegetation to its original state. Instead, grazing pressure needs to be reduced
back to I in order allow the vegetation to recover.

Besides the over-harvesting model by Noy-Meir (1975), catastrophic shifts
have been found in other ecological models as well as in (experiments on)
real ecosystems (Scheffer et al., 2001; Schröder et al., 2005). Well-known
examples are transitions of shallow lakes from clear to turbid states, triggered
by increases in nutrient input (Scheffer et al., 1993; Carpenter, 2005), deser-
tification resulting from plant-soil-water feedbacks (Rietkerk et al., 1996,
1997) and shifts in marine ecosystems driven by various factors, such as sea
temperature rise and overfishing (Jackson et al., 2001; Petraitis, 2013).

The notion that slow continuous environmental change can result in rapid
discontinuous ecosystem response has led to formulation of an ecosystem
property called ecological resilience. A frequently used definition of ecological
resilience is the one by Holling (1973, p. 17): “Resilience determines the
persistence of relationships within a system and is a measure of the ability
of these systems to absorb changes of state variables, driving variables, and
parameters, and still persist”. Figure 1.3 shows how this definition relates
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Figure 1.2: Example of a catastrophic shift triggered by gradually changing environmental con-
ditions. The lower panel depicts a bifurcation diagram, with the dotted lines corres-
ponding to the environmental conditions of the growth curves in the upper panels.
The closed dots and solid lines are stable equilibrium states and the open dots/dashed
lines are unstable equilibrium states. The red dots represent the actual state of the
ecosystem.

to the bifurcation diagram of the model by Noy-Meir (1975). In this figure,
the current state of the ecosystem is given by the red dot. The arrows
depict two measures of the ability of ecosystems to absorb changes, i.e.
measures of ecological resilience. The system is able to absorb environmental
changes (i.e. changes in driving variables/parameters) of a magnitude up to
a and perturbations of the system state (i.e. changes in state variables) of a
magnitude up to b without shifting to an alternative stable equilibrium state.

Catastrophic shifts and ecological resilience are now well embedded concepts
in ecology and the environmental sciences. Recent efforts in these fields focus
on establishing the architectural features in ecosystems that are responsible
for catastrophic shifts (Scheffer et al., 2012) and on assessing the proximity
of ecosystems to critical thresholds (i.e. a in Figure 1.3) through so-called
early-warning signals (Scheffer et al., 2009). The concept of catastrophic
shifts also inspired the formulation of “planetary boundaries” that border
the save operating space for humanity regarding environmental issues such
as climate change, ocean acidification and land-use change (Rockström et al.,
2009; Scheffer, 2015; Steffen et al., 2015).
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Figure 1.3: Bifurcation diagram of the model by Noy-Meir (1975). Arrows a and b represent
measures of ecological resilience following the definition by Holling (1973).

1.2.2.2 Transitions to cyclic dynamics

When positive feedbacks become dominant ecosystems need not shift to an
alternative equilibrium state, but can also transition to cyclic dynamics. In
differential equations, such cyclic dynamics are the result of (at least) two
interacting state variables, with contrasting effects on each other (for more
conditions see Kolmogorov, 1936; Edelstein-Keshet, 1988, p. 351). The
most well-studied examples of cyclic dynamics are found in predator-prey
models. In these models predators negatively affect the prey population. The
preys, in turn, positively affect the predator population. The first model
to describe cyclic predator-prey dynamics is the model by Volterra (1928).
In this model, cycles of neutral stability (i.e. neither stable nor unstable)
emerge if the system is brought out of equilibrium. Later extensions of this
model (Edelstein-Keshet, 1988, p. 223) showed that changes in parameters
can trigger a critical transition from steady to cyclic dynamics. Such stable
limit cycles emerge as a result of what is called an Andronov-Hopf bifurcation
in dynamical systems theory. A famous example of a stable limit cycle that
emerges from an equilibrium state is described by Rosenzweig and MacArthur
(1963) and Rosenzweig (1971) (Figure 1.4a). In their models an increase
in prey productivity results in destabilization of the equilibrium state, a
phenomenon known as the paradox of enrichment (Rosenzweig, 1971).

Predator-prey models successfully explain the temporal dynamics observed
in real ecosystems. A well-known dataset of Canadian lynx and hare abund-
ances shows cyclic dynamics in both populations (Figure 1.4b). The dynamics
in lynx and hares were first studied separately, leading various hypotheses on
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Figure 1.4: (a) Cyclic dynamics between predators and preys in the model by Rosenzweig and
MacArthur (1963). (b) Cyclic dynamics in the abundance of lynx and snowshoe hare,
indicated by the number of pelts received by the Hudson’s Bay Company, Canada
(Elton and Nicholson, 1942; Odum, 1953).

the cause of the cycles, ranging from climate forcing (Elton and Nicholson,
1942) to the sunspot cycle (Elton, 1924; Moran, 1949). However, when the
datasets were combined there appeared to be good match between them
(Odum, 1953), suggesting that, as in the models, the cycles were intrinsically
driven.

In predator-prey models, or more generally in consumer-resource models,
distinct repetitive catastrophic shifts can emerge when there is a large
difference in timescales at which the state variables operate (e.g. Ludwig et al.,
1978). In such fast-slow systems, temporal dynamics of the fast variable are
characterized by periods of little change, separated by rapid shifts (Figure
1.5).

1.2.2.3 Transitions to spatially periodic patterns

Besides alternative steady and cyclic dynamics, ecosystems can transition to a
different spatial structure in response to environmental change. A well-studied
phenomenon is the formation of spatially periodic patterns out of uniform
ecosystem states. This process is known as spatial self-organization (Rietkerk
and Van de Koppel, 2008) and is the result of positive feedbacks that dominate
locally (short range activation) in combination with distal negative feedbacks
(long range inhibition; Gierer and Meinhardt, 1972). This combination of
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Figure 1.5: Repetitive catastrophic shifts in a fast-slow system. (a) Repetitive shifts occur when
the isocline of the slow variable (dashed line; here the change in the slow variable
equals zero) separates the two stable branches of the bifurcation diagram of the fast
variable (solid line). (b) Temporal dynamics of the fast variable are characterized by
periods of little change, separated by rapid shifts (Rinaldi and Scheffer, 2000).
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1.3 Problem definition and research questions

positive and negative feedbacks is referred to as scale-dependent feedbacks
(Figure 1.6; Rietkerk and Van de Koppel, 2008).

Pattern formation is a ubiquitous property of reaction-(advection-)diffusion
models that combine local processes (reactions) and spatial processes (advec-
tion/diffusion). Two types of pattern forming reaction-(advection-)diffusion
systems can be distinguished: the activator-inhibitor system and the activator-
depleted substrate system (Edelstein-Keshet, 1988). In the activator-inhibitor
system an activator produces more of itself and of an inhibitor that inhibits
the production of the activator (Figure 1.7a). In the activator-depleted
substrate system an activator produces more of itself and depletes a substrate
that is required for activator production (Figure 1.7b). If the activator
spreads with a lower rate than the inhibitor or the substrate, these mechan-
isms can lead to pattern formation through what is called a Turing instability
(Turing, 1953) (for a detailed derivation of the required conditions see Segel
and Jackson, 1972; Edelstein-Keshet, 1988, pp. 516-520).

Observed patterns in ecosystems have been successfully reproduced by
models of both activator-inhibitor and activator-depleted substrate type.
Van de Koppel and Crain (2006) for instance, were able to model spatial
patterns in freshwater marshes, in which Carex stricta acts as an activator
and its litter as an inhibitor. Models by Klausmeier (1999) and Rietkerk et al.
(2002) suggest that patterns observed in arid ecosystems can be explained by
considering arid vegetation as activator and surface water, for which plants
compete by enhancing soil infiltrability, as (depleted) substrate (Figure 1.8).

Model studies suggest that the short range positive feedbacks involved in
pattern formation (Figure 1.6) enable patterned ecosystem states to persist
into harsher environmental conditions when compared to uniform states and
that as conditions change further, a catastrophic shift to a degraded uniform
system state can occur (Rietkerk et al., 2004). This means that observing
particular patterns could indicate that a system has alternative stable states
(Kéfi et al., 2010) and that patterns may serve as an early-warning signal for
catastrophic shifts (Rietkerk et al., 2004).

1.3 Problem definition and research questions

In the previous section I gave a brief overview of relevant insights in environ-
mental sciences and ecology that have been obtained through the application
of dynamical systems theory. However, the presented theory strongly relies on
stability analysis of uniform equilibrium states. This means that, in order to
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Figure 1.6: Pattern formation results from scale-dependent feedbacks (Rietkerk and Van de Koppel,
2008).
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Figure 1.7: (a) Activator-inhibitor system and (b) activator-depleted substrate system. The hori-
zontal arrows indicate direction of diffusion patch of activator. For pattern formation,
the diffusion rate of the inhibitor/substrate needs to be faster than that of the activator,
as indicated by the double horizontal arrows.
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modelled vegetation pattern observed vegetation pattern

Figure 1.8: Patterns in arid vegetation (dark: vegetation, bright: bare soil). Left: vegetation pat-
terns produced by the model of Rietkerk et al. (2002). Right: vegetation patterns in
a satellite image (Sudan, 11◦32’ N, 27◦57’ E; c©2004 Google Earth. c©2004 Digital-
Globe). The dimensions of the depicted area are 1× 1 km.

Table 1.1: Critical transitions in ecological models that are well understood because they can be
studied analytically (indicated by the check marks).

from
to

uniform equilibrium states cyclic dynamics patterned states

uniform equilibrium states

cyclic dynamics

patterned states

understand how ecosystems respond to environmental change, one is required
to assume that the system under consideration is spatially uniform and that
it is in equilibrium. This limits research on critical transitions to transitions
between uniform states or from uniform states to cyclic dynamics or patterned
states (see Table 1.1). Furthermore, the equilibrium assumption may not
be appropriate because of slow ecosystem dynamics, rapid environmental
change or stochastic events. As a result, a number of key questions remain
to be answered, as I will point out in this section.

1.3.1 Transitions from patterned to uniform states

When ecosystems are subject to environmental change, pattern formation
can occur due to an interplay of local positive feedbacks and distal negative

11
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Figure 1.9: Turing instability (indicated with T ) is responsible for pattern formation, but what
mechanisms are responsible for the transition to the uniform degraded state? (Rietkerk
et al., 2004).

feedbacks, as discussed in the previous section. To study under which
conditions such scale dependent feedbacks are strong enough to trigger
pattern formation, ecologists have relied on Turing analysis (e.g. Klausmeier,
1999; HilleRisLambers et al., 2001; Kefi et al., 2008; Eppinga et al., 2009).
Turing analysis consists of assessing the stability of uniform equilibrium states
by applying spatially heterogeneous perturbations. If a uniform system state
is unstable against such heterogeneous perturbations, then patterns can be
expected to form.

Although Turing analysis gives an indication on when patterns form, is
does not provide any information about the stability of the patterns that
form. Hence, it cannot be used to study when and how patterned ecosystems
transition to (degraded) uniform states. An open question therefore remains:
How do patterned ecosystems transition to uniform degraded states?.

In order to study how patterned ecosystems respond to change one would
have to study the stability of patterned states of ecological models. Advanced
analyses that enable studying the stability of patterned states have recently
been applied to ecological models (Van der Stelt et al., 2013; Sherratt, 2013a).
In Chapter 2 of this dissertation I will use these techniques to understand
the response of patterned ecosystems to environmental change.
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1.3 Problem definition and research questions

1.3.2 Frequency and magnitude of resource pulses

In some cases ecosystem dynamics are controlled by discrete events, such as
rain storms, floods, fires and predation. In order to apply equilibrium analysis,
such events are sometimes aggregated to capture their resulting effect in a
single parameter or function. Rainfall, for example, is often treated as a
constant parameter (Rietkerk et al., 1997; Klausmeier, 1999; Rietkerk et al.,
2002), predation as a function of prey density (Holling, 1959) and disturbances
are modelled as a constant loss term (Hastings, 1980; Nee and May, 1992;
Tilman, 1994). While this approach benefits analysis, information is also
lost regarding the frequency and magnitude of the events. This information
may be particularly important when studying ecosystems that depend on
resource pulses and that have a limited capacity to take up resources. In
these ecosystems, infrequent, high magnitude pulses may lead to greater
resource losses than frequent low magnitude pulses. However, in patterned
ecosystems, and in activator-depleted substrate systems in particular, the loss
of resource at one location may be beneficial elsewhere. Therefore, patterned
ecosystems may function well if resource pulses are of high magnitude.

In Chapter 3 of this dissertation I will derive a function that aggreg-
ates resource pulses without losing information about their frequency and
magnitude. This allows answering the following question using equilibrium
analysis: How do changes in the frequency and magnitude of resource pulses
affect (patterned) ecosystems with limited resource uptake capacity?

1.3.3 Processes at multiple timescales

The rates of processes within ecosystems often differ widely. These differences
in timescales can be advantageous for model analysis as they allow studying
fast and slow processes separately, providing more detailed insights into
cyclic ecosystem dynamics for instance (e.g. as in Figure 1.5; Rinaldi and
Scheffer, 2000). However, how processes should be divided into fast and
slow processes is not always a priori clear. Within the same ecosystem,
processes may operate on the time scale of seconds (e.g. infiltration of water,
overland flow), months (e.g. growth of herbs), decades (e.g. tree growth)
and centuries (e.g. soil formation), without being trivially dividable into two
groups. One solution is to limit the number of state variables in ecological
models by leaving out the extremes, thereby focussing on specific timescales
only. However, very fast or very slow processes may be key in explaining
ecosystem dynamics. Furthermore, very slow processes, that operate on
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1 Introduction

ecosystem development timescales, may have effects that are too slow to
observe in empirical studies, meaning that modelling studies are required
to understand their role in ecosystem dynamics. This raises the following
question: How do interactions between processes at multiple timescales affect
ecosystem dynamics?

In Chapter 4 of this dissertation I will demonstrate that dividing processes
into three groups, rather than two, still allows detailed analysis of ecological
models, providing ways to understand both the emergence and stagnation of
cyclic dynamics and explaining both rapid short-term shifts and long-term
ecosystem development.

1.3.4 Rapid environmental change

Equilibrium analysis can only be applied to models without explicit time
dependency (i.e. to autonomous models). As a result, environmental changes
are generally assumed to be very slow when studying ecological models.
However, the current anthropogenic environmental changes can often not
be regarded as slow. Recent model studies outside ecology have suggested
that rapid change in parameters can trigger critical transitions (Wieczorek
et al., 2010; Luke and Cox, 2011; Ashwin et al., 2012; Perryman, 2015),
even when slow changes of the same magnitude would not. These findings
lead to the following questions that will be treated in Chapter 5: Can rapid
environmental change trigger critical transitions in ecological models? If so,
what mechanisms are responsible and how can “rate sensitive” ecosystems be
identified?

1.4 Focus: water-limited ecosystems

Although the posed research questions apply to various ecosystems, they all
apply to water-limited ecosystems.

Periodically patterned vegetation has been observed in (semi-)arid dry-
lands (Macfadyen, 1950; Deblauwe et al., 2008, Figure 1.10a) and has been
successfully reproduced by models (e.g. Klausmeier, 1999; Von Hardenberg
et al., 2001; Rietkerk et al., 2002; Gilad et al., 2004). Advanced analysis
of these models would help understanding how patterned arid ecosystems
transition to uniform bare states (i.e. desertification; Problem 1.3.1).

Water-limited ecosystems rely on pulsed resource input in the form of rain
events. In addition, these events are projected to become more intense and
to become more intermittent due to climate change (Tebaldi et al., 2006;
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1.4 Focus: water-limited ecosystems

Solomon et al., 2007). Affected regions include (semi-)arid regions such as
the Sahel and the Horn of Africa (Figure 1.10b). Explicitly incorporating rain
events in an ecological model may provide insights into how the projected
changes in rainfall patterns affect the ecosystems in these regions (Problem
1.3.2).

Coastal dune ecosystems in temperate climates can also be water-limited
for at least part of the year, because of high wind velocities and sandy soil
textures. Dry sandy dune soils are also known to be water repellent (Dekker
and Jungerius, 1990; Ritsema et al., 1993), a soil property caused by the very
slow accumulation hydrophobic compounds originating from plant material
(Mao et al., 2015). Soil water repellency potentially hampers infiltration into
the rootzone, meaning that fast soil water dynamics, slower plant dynamics
and very slow soil dynamics are linked in coastal dunes (Figure 1.10c). This
provides ways to understand their dynamics in detail through separation of
timescales (Problem 1.3.3).

Finally, arid regions are home to about one third of the human population
and with a growth rate of over 18 % population density in arid regions
increases more rapidly than in any other ecological zone (Safriel et al., 2005;
UNEP, 2007, Figure 1.10d). This not only means that many people depend
on the services provided by arid ecosystems, but also that rapid anthropogenic
environmental changes are currently imposed on these ecosystems (Problem
1.3.4).

For the above reasons, the focus of the remaining chapters of this disserta-
tion will be on water-limited ecosystems.
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2 Beyond Turing: the response of
patterned ecosystems to
environmental change.

Siteur, K., Siero, E., Eppinga, M. B., Rademacher, J. D. M., Doelman, A. and
Rietkerk, M. (2014), Beyond Turing: The response of patterned ecosystems
to environmental change. Ecological Complexity 20:81-96.

Abstract

Spatially periodic patterns can be observed in a variety of ecosystems. Model studies

revealed that patterned ecosystems may respond in a nonlinear way to environmental

change, meaning that gradual changes result in rapid degradation. We analyse this response

through stability analysis of patterned states of an arid ecosystem model. This analysis goes

one step further than the frequently applied Turing analysis, which only considers stability

of uniform states. We found that patterned arid ecosystems systematically respond in two

ways to changes in rainfall: 1) by changing vegetation patch biomass or 2) by adapting

pattern wavelength. Minor adaptations of pattern wavelength are constrained to conditions

of slow change within a high rainfall regime, and high levels of stochastic variation in

biomass (noise). Major changes in pattern wavelength occur under conditions of either low

rainfall, rapid change or low levels of noise. Such conditions facilitate strong interactions

between vegetation patches, which can trigger a sudden loss of half the patches or a

transition to a degraded bare state. These results highlight that ecosystem responses

may critically depend on rates, rather than magnitudes, of environmental change. Our

study shows how models can increase our understanding of these dynamics, provided that

analyses go beyond the conventional Turing analysis.
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2 Beyond Turing

2.1 Introduction

Spatially periodic patterning of sessile biota can be observed in a variety
of ecosystems including arid ecosystems (Macfadyen, 1950), mussel beds
(Van de Koppel et al., 2005), boreal peatlands (Malmström, 1923) and
tropical peatlands (Baldwin and Hawker, 1915). Such spatially periodic
patterns can typically not be explained by underlying heterogeneity in the
environment, which suggests that they are self-organized. Self-organization
into periodic patterns is the result of positive feedbacks that act locally (short
range activation) in combination with distal negative feedbacks (long range
inhibition; Gierer and Meinhardt, 1972). This combination of feedbacks is also
referred to as scale-dependent feedbacks (Rietkerk and Van de Koppel, 2008).
In arid ecosystems, the combination of locally reduced evaporation through
shading and water uptake by laterally extended roots is known to induce such
scale-dependent feedbacks (Gilad et al., 2004; Meron, 2012). Scale-dependent
feedbacks can also result from the fact that in arid ecosystems plants tend to
improve soil structure which allows more water to infiltrate during rain events
(Rietkerk et al., 2000; Thompson et al., 2010a). This results in increased
water availability and increased plant growth, meaning that locally a positive
feedback loop is active. However, water availability farther away is negatively
affected by this facilitative effect: surface water accumulates on bare soils
during intense rain events and moves towards vegetated areas due to a
gentle slope or due to infiltration differences on flat terrain (Klausmeier,
1999; Rietkerk et al., 2002). In arid ecosystems, local positive feedbacks are
therefore linked to a flux of resource that results in long range inhibition and
consequently in pattern formation. This type of scale-dependent feedback is
referred to as the resource-concentration mechanism (Rietkerk et al., 2004).
The positive feedbacks that are often involved in pattern formation (Rietkerk
and Van de Koppel, 2008) are associated with nonlinear ecosystem response
to environmental change (DeAngelis et al., 1980; Rietkerk et al., 2004). This
means that gradual changes in environmental conditions may result in sudden
significant losses in productivity and in degradation of patterned ecosystems.

Reaction-(advection-)diffusion models have been developed to understand
the mechanisms responsible for pattern formation, to study the conditions
under which scale-dependent feedbacks are strong enough for patterning
to occur and to get more insight in the possible nonlinear behaviour of
patterned ecosystems (e.g. Klausmeier, 1999; Von Hardenberg et al., 2001;
Rietkerk et al., 2002; Gilad et al., 2004). In these models, patterns typically
arise from a uniform system state that becomes unstable to heterogeneous
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2.1 Introduction

perturbations. This type of instability is referred to as Turing instability
(after A.M. Turing, 1912-1954; Turing, 1953) and is thought to be involved
in for example the formation of patterns on animal coats (Meinhardt, 1982),
on sea shells (Meinhardt, 1995) and in chemical systems (Gray and Scott,
1984; Pearson, 1993). Using linear stability analysis, it is possible to find the
parameter ranges for which a uniform system state is Turing unstable.

At present, Turing analysis is used as a relatively simple way to study the
environmental conditions under which one would expect periodic patterns to
be observed (e.g. Klausmeier, 1999; HilleRisLambers et al., 2001; Meron et al.,
2004; Gilad et al., 2004; Kefi et al., 2008; Eppinga et al., 2009). However,
since Turing analysis only considers the stability of uniform system states, it
provides very little information about the behaviour of ecosystems that are
in a patterned state. Therefore, previous studies have been exploring this
behaviour using numerical approaches. These studies revealed a number of
interesting properties of patterned ecosystems. Various model studies suggest
that patterns can be expected under conditions where uniform system states
are still stable and under conditions too harsh for uniform cover to be
sustained (e.g. Von Hardenberg et al., 2001; Rietkerk et al., 2002). These
findings imply that stable uniform and stable patterned states can coexist for
a range of environmental conditions (Rietkerk et al., 2004). The coexistence
of alternative stable ecosystem states can result in so-called critical transitions
(Scheffer, 2009) if environmental conditions change, which are associated with
sudden losses of productivity and ecosystem degradation (Scheffer et al., 2001).
Numerical studies that looked in more detail to the dynamics of patterned
ecosystem states suggest that multiple stable patterned states, with different
wavelength or spatial configurations, can coexist and that this can result in
hysteresis and more gradual ecosystem adaptation if environmental conditions
change (Sherratt and Lord, 2007; Bel et al., 2012).

Although studies with numerical approaches uncovered some interesting
characteristics of patterned ecosystems, recent studies have been exploring
whether the use of analytically based methods provides more detailed insights
(Van der Stelt et al., 2013; Sherratt, 2013a). These approaches go one step
further than Turing analysis as they consider the stability of patterned rather
than uniform ecosystem states. By combining stability analysis on patterned
states with model runs Sherratt (2013a) demonstrated that hysteresis can
be explained by the coexistence of multiple stable states. His study also
suggests that the rate at which environmental conditions change may affect
system response. This is of particular importance as current human activities
induce anomalous rates of environmental change (e.g. Joos and Spahni,
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2 Beyond Turing

2008). Although these results suggest that information about the stability of
patterned states is essential in understanding ecosystem response to changing
environmental conditions, the application of stability analysis on patterned
states in the field of ecology has been limited so far and various ecologically
relevant questions remain to be answered (Van der Stelt, 2012, p.95-100).

One of the processes that are not well understood is the process of pattern
wavelength adaptation. Patterned ecosystems can respond to environmental
change by adapting pattern wavelength and the study by Sherratt (2013a)
showed that this process is affected by the rate of environmental change.
It is, however, unknown why and how patterned ecosystems adapt and
why this depends on the rate of change. In this study we therefore aim to
provide a mechanistic understanding of how patterned ecosystems respond
to environmental change, considering both the magnitude of change as well
as the rate of change. By applying stability analysis on patterned system
states, we first show that the use of Turing analysis can yield false negatives
and false positives with regard to predicting the existence of observable (i.e.
stable) patterns. Based on the mechanisms that are involved in pattern
destabilization, we then discuss possible types of pattern adaptation. Using
model runs, we demonstrate that knowledge about the stability of patterned
states is crucial in understanding the response of ecosystems subject to
environmental change and show how the rate of change in environmental
conditions and the level of imposed spatio-temporal noise affect system
response. Finally, we propose that competition for resources between patches
of vegetation provides a possible ecological explanation for the obtained
results. In this study we use an extended version of an arid ecosystem model
by Klausmeier (1999) as introduced by Van der Stelt et al. (2013), which we
will discuss in the next section.

2.2 Model description and analyses

2.2.1 Model description

The extended version of the Klausmeier model is a reaction-advection-diffusion
model in which the formation of spatial vegetation patterns is the result
of competition for surface water. The model has two state variables that
are functions of both time t and space x (x ∈ R): plant biomass n and
surface water w. Notice that we will consider only one spatial dimension
(x), following Van der Stelt et al. (2013) and Sherratt (2013a). The model is
given by Equation 2.1 and 2.2. We use a non-dimensional version the model
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in order to reduce the number of parameters. For a dimensional version of
the model and the physical meaning of the parameters, see Appendix 2.A.

∂w

∂t
= a− w − wn2 + v

∂w

∂x
+ e

∂2wγ

∂x2
(2.1)

∂n

∂t
= wn2 −mn+

∂2n

∂x2
(2.2)

The change in surface water w (Equation 2.1) is controlled by rainfall a,
surface water losses (second term) and uptake by plants through infiltration
and transpiration (third term). As in the original model by Klausmeier
(1999), the movement of surface water due to gradients in the terrain is
captured with an advection term (fourth term). We extended the model by
adding diffusion of surface water (fifth term). We did this for three reasons.
First, the diffusion term has a physical basis as it can be derived from the
shallow water equations (Gilad et al., 2004). Second, it allows us to capture
the movement of surface water induced by spatial differences in infiltration
rate (Rietkerk et al., 2002). Third, it enables us to demonstrate that the
type stability analysis we use to study the system’s response to change can
be applied to both reaction-advection-diffusion and reaction-diffusion model
(v 6= 0 and v = 0 respectively).

The dynamics in plant biomass n (Equation 2.2) are determined by plant
growth which is linearly related to water uptake (first term) and by plant
mortality (second term). As in the original model, plant dispersion is modelled
with a diffusion term (third term).

The non-dimensional version of the model has five parameters. We chose
parameter values that are valid for grass as reported by Klausmeier (1999).
Plant mortality was set to m = 0.45 and for flat and sloped terrain v = 0 and
v = 182.5 respectively. As we are interested in the response of the system to
changes in rainfall, we use rainfall a as bifurcation parameter and let it vary
between a = 0 to a = 3.5. For simplicity we chose γ = 1. Van der Stelt et al.
(2013) showed that the value of γ does not qualitatively affect the structure
of stability regions. Therefore the results presented in the following sections
are not expected to differ qualitatively for other values of γ. Finally, e was
calibrated to obtain patterns in a realistic rainfall range according to studies
listed by Deblauwe et al. (2008), which appeared to be for e = 500. For
conversion of these dimensionless parameters to dimensional parameters, see
Appendix 2.A.

The extended Klausmeier model falls in the broader class of reaction(-
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advection)-diffusion models referred to as activator-depleted substrate systems
(Edelstein-Keshet, 1988) with vegetation being the activator and surface water
being the substrate. In addition, it shows strong similarities with other well
studied models, depending on parameter choice. Naturally, if e = 0 we return
to the original (one dimensional) Klausmeier model (Klausmeier, 1999). With
v = 0 and γ = 1 the model is equal to the model studied by Kealy and
Wollkind (2012) and the well studied chemical model by Gray and Scott
(1984). Finally, the model has been studied by Van der Stelt et al. (2013) for
constant rainfall a.

It should be mentioned that apart from the model by Klausmeier (1999)
and derivations thereof (Van der Stelt et al., 2013; Kealy and Wollkind,
2012) a large body of model studies have been published that dedicate
pattern formation in arid ecosystems to a variety of mechanisms, including
competition for surface water (Dunkerley, 1997; HilleRisLambers et al.,
2001; Rietkerk et al., 2002), competition through soil water uptake by roots
(Von Hardenberg et al., 2001; Meron et al., 2004), a combination of these
mechanisms (Gilad et al., 2004) or plant-plant interactions only (Lefever
and Lejeune, 1997; Lejeune and Tlidi, 1999; Lejeune et al., 1999, 2002).
These models may be suitable depending on system characteristics such as
climate, soil and plant properties and can be used to answer specific research
questions. However, here we limit our study to the analysis of the more
generic extended Klausmeier model as it captures pattern formation in a
relatively parsimonious way.

2.2.2 Analyses

In order to study the response of the system to changes in rainfall a, knowledge
is required about the rainfall ranges for which stable spatially uniform and
patterned states of Equations 2.1 and 2.2 exist. We derived the existence
of system states and assessed their stability by performing linear stability
analysis. This type of analysis, together with the obtained stability regions
in parameter space, will be discussed in detail in the next section. The
boundaries of the stability regions were obtained by tracking the marginally
stable patterned system states (Doelman et al., 2012; Sherratt, 2013b) using
AUTO continuation software (AUTO-07p; Doedel, 1981).

As the rainfall a changes stable states may lose their stability. The stability
regions, as obtained using stability analysis, provide insight in when a system
state destabilizes. However, the behaviour of the system after destabilization
(e.g. re-stabilization) is a priori unknown. To study this, we performed runs of
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2.3 Stability of uniform and patterned states

the model with linearly increasing and decreasing rainfall a. The model runs
were performed in MATLAB (version 2012a - 7.14.0.739; The MathWorks,
Inc.) using a vector of 1024 elements that represent a domain with a size
of 1000 (500 meters). Periodic boundary conditions were used to diminish
boundary effects and to mimic an infinite domain. We studied the response
of the system under different rates of change in a (dadt = −10−7, −10−4

and −10−2). We added spatially and temporally uncorrelated multiplicative
uniformly distributed noise to both components of the model every 1

4 year
(noise amplitude = 0, 5.10−5% and 0.05%). The noise was added to diminish
numerical artefacts, such as the system residing in unstable system states, and
represents potential sources of noise that are not captured by the deterministic
equations.

The state of the system can be expressed in terms of pattern wavenumber
κ (= 2π

wavelength). To enable comparison between the model runs and the
stability regions, we assessed the wavenumber of the patterns as generated
by the model by applying discrete Fourier transformations. This is explained
in detail in Appendix 2.B.

2.3 Stability of uniform and patterned states: from
Turing instability to the Busse balloon

In this section we discuss the stability of uniform and patterned states of the
extended Klausmeier model. In Section 2.3.1 we briefly review well-known
linear stability analysis (Turing analysis) as applied to uniform system states.
We then continue by discussing the mathematically more challenging stability
analysis of patterned states in Section 2.3.2. Finally we compare the stability
regions obtained in both subsections and discuss the ecologically relevant
results in Section 2.3.3.

2.3.1 Existence and stability of uniform system states

Determining the stability of uniform steady states to uniform perturbations
is a fairly easy task: first one derives the steady states of the system, and
then one perturbs the steady states. The stability of the system state is then
defined by the sign of the exponential growth rate of the perturbation: the
maximum real part of eigenvalues λ. Solely negative real parts of eigenvalues
imply a (asymptotically) stable state, whereas a positive real part means that
the system state is unstable. A bifurcation occurs when due to a parameter
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2 Beyond Turing

change the growth rate of a perturbation max(<(λ)) becomes positive (here
max() refers to the maximum of a set values and <() takes the real part of
a complex number). The system is marginally stable at such an onset of
instability. Marginal stability marks the boundaries of stability regions in
parameter space.

Uniform system states can be derived by setting Equations 2.1 and 2.2 to
zero while neglecting advection and diffusion fluxes. The extended Klausmeier
model presented in the previous section has three uniform steady states for
a > 2m (see Appendix 2.D.1 for a derivation). Two of the steady states
are vegetated (so n̄ > 0), of which one is stable to uniform perturbations
for ecologically relevant parameter values (m < 2) and one is unstable (see
Appendix 2.D.2 for stability analysis). A stable bare desert state (n̄ = 0)
exists for all values of a. At a = aSN := 2m a saddle-node bifurcation occurs.
Here the vegetated states cease to exist, meaning that for a < aSN only a
stable bare state exists.

Perturbations in natural systems are generally heterogeneous. To account
for this in the stability analysis, spatially heterogeneous perturbations can
be added to the uniform states (Turing, 1953; Edelstein-Keshet, 1988). Het-
erogeneous perturbations can be represented as sinusoids with wavenumber
κ (= 2π

wavelength) of which the amplitude grows (or decays) with a rate of
max(<(λ(κ))).

When perturbing the stable uniformly vegetated state of the extended
Klausmeier model with such sinusoids (Appendix 2.D.3), a range of values for
a can be found for which the state is Turing unstable. Here the amplitude of
a perturbing sinusoid grows over time (max(<(λ(κ, a))) > 0). Whether this
occurs does not only depend on intrinsic model parameters, such as a, but
also on the wavenumber of the sinusoid κ. The solid red line in Figure 2.1a,b
borders the region in (a, κ)-space for which the uniformly vegetated state is
Turing unstable. Assuming that the amplitude of the imposed perturbations
grow while their wavenumber is preserved, one would expect patterns to
exist in this region. Therefore this can be seen as a Turing prediction region.
If rainfall decreases over time, patterns will form directly after the Turing
bifurcation T (or Turing-Hopf bifurcation TH if v 6= 0; Van der Stelt et al.,
2013) as here the uniform state becomes unstable. These patterns will have
a wavenumber close to κT (or κTH): the wavenumber of the perturbation
that initializes the Turing bifurcation. Model runs show that when randomly
perturbing uniform states that are Turing unstable, the system tends to
evolve to a state with a pattern wavenumber close to the wavenumber of the
perturbation with the largest growth rate, also referred to as most unstable
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2.3 Stability of uniform and patterned states

mode (dashed red line in Figure 2.1a,b; Sherratt and Lord, 2007). As we will
show in Section 2.4 however, pattern wavenumber can strongly deviate from
the this wavenumber if environmental conditions change.

2.3.2 Existence and stability of patterned system states

So far we have discussed the stability of uniform system states. The patterned
states that arise from a Turing unstable uniform state are, however, not
necessarily stable themselves. Unlike uniform steady states, it is generally
not possible to find explicit expressions for patterned states by hand. For
this and subsequent determination of stability we rely on numerics.

Patterns may exist in the form of so-called wavetrains: vegetation bands
that slowly migrate in uphill direction. In fact for v = 182.5 this is the case
for all patterns. To deal with this a comoving frame ξ = x− st is introduced.
Here s is equal to the migration speed: a pattern dependent property that
is assumed to be constant in space and time. This results in additional
advection terms in both equations. A pattern (wp, np) with wavenumber κ
exists for rainfall a if and only if it is a solution to the system

0 =a− wp − wpn2
p + (v + s)

dwp
dξ

+ e
d2wγp
dξ2

(2.3)

0 =wpn
2
p −mnp + s

dnp
dξ

+
d2np
dξ2

(2.4)

on the domain [0, 2π
κ ] with periodic boundary conditions. See Appendix 2.E.1

for a derivation of these equations. Notice that, besides the parameters of
the extended Klausmeier model (Equations 2.1 and 2.2), migration speed s
and wavenumber κ now appear as additional parameters. Parameters s and
κ can be used to express the state of the system.

Since the existence of unstable patterned states is not of immediate interest
we also require stability. To determine this we need to linearise about
(wp, np) leading to ordinary differential equations with a dependency on wp
and np (Appendix 2.E.2). The perturbations are no longer represented by
sinusoidals. Instead they are given by products of two functions: a sinusoidal
eiν (with wavenumber ν) and an a priori unknown periodic function with the
same wavenumber κ as the pattern. The eigenvalues of the corresponding
perturbations are complex and depend on ν.

Stable patterns exist in what is referred to as the Busse balloon (after F.H.
Busse; Busse, 1978): the region in (parameter,κ)-space for which at least one
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2 Beyond Turing

stable periodic solution exists (Van der Stelt et al., 2013). If a patterned
state is stable, it is said to be in the Busse balloon. Busse balloons for the
extended Klausmeier model are depicted in Figure 2.1a,b (bordered by the
black solid line). Apart from the patterned states, a stable uniform bare
state (κ = 0) exists for all rainfall values.

Stability regions are bordered by marginally stable solutions. Therefore
a Busse balloon can be constructed by finding marginally stable solutions.
If one marginally stable solution is known it is possible to track marginal
stability while changing a parameter (with the use of continuation software
AUTO; Doedel, 1981). A precise description of this procedure can be found
in the article by Rademacher et al. (2007). The Busse balloon is obtained
by plotting the wavenumbers κ of the marginally stable solutions against
the changing parameter. In order to track marginal stability we also need to
know exactly how the eigenvalues obtain a positive real part: what is the
destabilization mechanism?

In Van der Stelt et al. (2013) it is rigorously proven through the derivation
of amplitude equations (Ginzburg-Landau analysis) that stable patterns exist
close to the Turing(-Hopf) bifurcation: it is derived that the bifurcation
is supercritical (for the scalings considered). Close to the Turing(-Hopf)
bifurcation the region in (a, κ)-space where stable patterns exist is bounded
by a parabola of marginally stable patterns (Van der Stelt et al., 2013). Also,
the destabilization mechanism is identified as being a sideband instability or
Eckhaus instability.

The sideband instability is characterized by a change in sign of the curvature
of the eigenvalues attached to the origin (ν = 0), as depicted in Figure 2.1c.
For marginally stable patterns, which separate stable from unstable patterns,
there is no curvature at ν = 0. This corresponds to a second derivative
at ν = 0 that equals zero. If, due to changing rainfall, patterns lose their
stability, perturbations with ν close (but unequal) to zero become able to
destabilize patterned states.

With the current parameter combination the sideband is the dominant
destabilization mechanism for the extended Klausmeier model (Van der
Stelt et al., 2013). Only for very small wavenumbers κ it is superseded by
intertwining Hopf instabilities (Doelman et al., 2012). In this case, onset
of instability occurs away from ν = 0, but continuation with AUTO is still
possible (Rademacher et al., 2007; Doelman et al., 2012).

The perturbations, which consist of products of eiν and functions with
the same wavenumber as the pattern κ, need not be periodic, but can
be for particular values of ν. For example, perturbations with ν = 0 are
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2.3 Stability of uniform and patterned states

periodic with pattern wavenumber κ, since e0 = 1. As shown in Figure
2.1c, perturbations with wavenumber κ (ν = 0) are not able to destabilize
a patterned state: due to translation symmetry the growth rates of these
perturbations remain zero. Perturbations with ν = π are periodic with
wavenumber κ/2 since eπi = −1. If perturbations with wavenumber κ/2
(ν = π) become able to destabilize a patterned state, a so-called spatial
period doubling bifurcation occurs. Growth of these perturbations results in
a halving of the pattern wavenumber. Recall that the wavelength is inversely
proportional to the wavenumber, so the wavelength (spatial period) doubles.
According to Figure 2.1c, perturbations of this kind are the last to destabilize
a patterned state as rainfall a decreases, however they do attain the largest
growth rate soon after. The black dashed line in Figure 2.1a,b depicts the
period doubling instability.

In summary, we discussed that the stability of patterned states can be
assessed by tracking marginal stability. To do this, knowledge about the
destabilization mechanisms is required. For the extended Klausmeier model
the sideband instability is the dominant destabilization mechanism, meaning
the curvature (second derivative) of the curve of eigenvalues (Figure 2.1c)
can be used to trace the boundary of the stable pattern region.

2.3.3 Ecological implications

We determined the stability of patterned ecosystem states and discussed
some important destabilization mechanisms, but what ecologically relevant
information can we extract from Figure 2.1?

First, we observe that the Turing prediction region and the Busse balloon
only partly overlap. A large part of the patterns in the Turing predic-
tion region turn out to be unstable, and are therefore unlikely to observed.
Furthermore, stable patterns exist outside the Turing prediction region for
a < aSN and if v 6= 0, also for a > aSN . These patterns cannot form directly
from a Turing unstable uniform state. Although stable patterns do no ap-
pear at rainfall values above the Turing(-Hopf) bifurcation for the extended
Klausmeier model, this may be different for other models (e.g. Rietkerk et al.,
2002). The differences between the Turing prediction region and the Busse
balloon suggest that a relatively simple Turing analysis gives very limited
information about the parameter regimes for which one can expect patterns
to be observed.

Second, Figure 2.1 shows that for a given rainfall value a range of stable
patterned states exists. Since the system has many stable states, it can
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Figure 2.1: Stability regions of the non-dimensional extended Klausmeier model (Equations 2.1
and 2.2) in (a, κ)-space for flat (a; v = 0) and sloped terrain (b; v = 182.5). In (a) and
(b) a represents rainfall and κ is the wavenumber of the patterned state. The black
solid curve indicates the location of the sideband instability and borders the stable
pattern region or Busse balloon (shaded area). A period doubling bifurcation occurs
on the black dashed line. The grey curves in (b) show the contours of constant uphill
pattern migration speed s. The red solid line borders the Turing prediction region
where perturbations of the uniformly vegetated state grow in amplitude. On the right
hand border of the Turing prediction region uniform states are marginally stable to
spatial perturbations. On the left hand border of this region the Turing unstable
uniform state ceases to exist (saddle-node bifurcation SN ; a = aSN := 2m). The
wavenumber of the perturbation with the largest growth rate is indicated by the red
dashed line. The highest rainfall value at which the uniformly vegetated state is Turing
unstable is marked as the Turing bifurcation point T (or Turing-Hopf bifurcation point
TH if v 6= 0). (c) The maximum real part of eigenvalues for perturbations of patterned
states plotted against Floquet wavenumber ν. The perturbed patterned states have a
wavenumber of κ = 0.43009 (≈ κT ). Notice that the perturbed states are marked with
crosses in (a). At a ≈ 1.5521 a sideband bifurcation (SB) occurs. Here the curvature
at ν = 0 changes sign. At a ≈ 1.4099 a period doubling bifurcation (PD) occurs. Here
max(<(λ(ν))) at ν = π ≈ 3.14 becomes positive.
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2.4 System response to changing environmental conditions

be considered multistable. The current state, in terms of wavenumber κ,
consequently depends on history, meaning that hysteresis can be expected.

Third, a pattern with a given wavenumber κ is stable for a range of a.
This means that the same pattern wavenumber can in theory be observed for
a range of external conditions. Furthermore, if external conditions change,
one would expect the wavenumber of a pattern to remain constant as long as
it is stable, i.e. as long as the external conditions remain within the range
for which the pattern is stable.

Fourth, the shape of the Busse balloon allows high wavenumbers to be
stable only at high values of a. The opposite is true for low wavenumbers.
The presence of a slope affects the shape of the Busse balloon. Pattern
formation occurs at higher rainfall rates and patterned states can sustain
under more arid conditions on sloped terrains. The absence of a slope allows
high wavenumber patterns to be stable, while the rainfall range for which
stable low wavenumber patterns exist is narrow. On sloped terrains in
contrast low wavenumber patterns can be expected to be observed for a wide
rainfall range.

Finally, we observe that the period doubling instability approaches the
boundary of the Busse balloon as rainfall a decreases. Meaning that at low
rainfall values, period doubling takes place almost simultaneously with the
destabilization of a pattern. In addition, the boundary of the Busse balloon
is steeper at low rainfall values. This means that at low rainfall values an
incremental decline in rainfall could result in desertification if the system is
close to the boundary of the Busse balloon.

2.4 System response to changing environmental
conditions

The obtained information about the stability and destabilization of patterned
states is not enough to fully understand the behaviour of patterned ecosystems
when subject to changing environmental conditions. This is because the
linearisation we implicitly apply only enables us to describe the behaviour
of the system close to the steady state. Consequently, if the system is
pushed away from a steady state (during pattern destabilization) it is a
priori unknown to which state it will evolve (restabilisation). In this section
we study the behaviour of the system while gradually changing the rainfall
parameter and relate this behaviour to the findings presented in the previous
section. First we describe history dependence within the system resulting
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2 Beyond Turing

from multistability in Section 2.4.1. In Section 2.4.2 we then study in more
detail the restabilisation of the system and its dependence on the rate with
which rainfall changes and on the level of noise imposed on the system.
Finally, in Section 2.4.3 we propose an ecological mechanism that controls
system restabilisation.

2.4.1 Bouncing through the Busse balloon

The non-dimensional extended Klausmeier model (Equations 2.1 and 2.2)
was run with the rainfall a changing over time with a rate of da

dt = ±10−4.
This rate of change corresponds to a change in annual rainfall of about 0.1
mm year−1.

Figure 2.2 shows how the system responds to changing rainfall on flat terrain
(v = 0). When rainfall decreases, patterns in plant biomass emerge shortly
after the uniformly vegetated state becomes Turing unstable (Figure 2.2a).
The mean plant biomass of the patterned state does not differ much from that
of the Turing unstable uniform system state (Figure 2.2d). The wavenumber
of the pattern does not change as long as the pattern is stable. The pattern
amplitude in contrast increases during pattern formation after which it slowly
decreases with declining a. At some point, the decreasing rainfall forces the
system outside the Busse balloon and the pattern destabilizes (Figure 2.2c).
This results in a pattern with a lower wavenumber and a larger amplitude.
These transitions are not distinguishable in mean biomass (Figure 2.2d). The
adaptation of the wavenumber is accompanied by the extinction of what can
be considered as vegetation patches. When a reaches a value for which no
stable patterned state exists, desertification occurs and all remaining patches
go extinct simultaneously.

If rainfall increases over time similar behaviour can be observed (Figure
2.2b), however now patterns destabilize at the lower border of the Busse
balloon and the wavenumber increases until eventually a uniformly vegetated
state is reached (Figure 2.2c). During wavenumber adaptation vegetation
patches split up. Since the trajectories for decreasing and increasing rainfall
differ, hysteresis occurs (Sherratt, 2013a).

On sloped terrain (Figure 2.3), patterns emerge in the form of vegetation
bands that migrate in uphill direction (travelling waves). As the Busse
balloon is wider in terms of wavenumber κ the hysteresis effect is more
pronounced when compared to flat terrain. As shown by Figure 2.3, the
migration speed of the vegetation bands gets lower as rainfall decreases.
However, during wavenumber adaptation vegetation bands accelerate leading
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2.4 System response to changing environmental conditions

to slightly elevated migration speeds directly after transition.
Although wavenumber adaptation occurs some time after patterned states

destabilize, as discussed earlier by Sherratt (2013a), Figures 2.2 and 2.3
indicate that the Busse balloon helps in understanding how patterned ecosys-
tems respond to changes: 1) as long as the system is in the Busse balloon it
responds by changing the amplitude (and migration speed) of the patterns, 2)
if, due to changing rainfall a, the system is forced outside the Busse balloon
it responds by changing its pattern wavenumber.

At first sight, the Busse balloon does not seem to provide insight in what
determines the selection of a new wavenumber after pattern destabilization.
In the next section we show how wavenumber selection is affected by the rate
at which the rainfall changes and by the amount of spatio-temporal noise to
which the system is exposed.

2.4.2 Wavenumber selection: the role of rate of change and noise

The model was run for v = 0 with different rates of change in rainfall
∣∣da
dt

∣∣
(with da

dt < 0) and different noise levels. As shown in Figure 2.4, wavenumber
adaptation occurs with increasing step size (in terms of wavenumber κ) for
increasing rates of change. At high rates of change, desertification can take
place at rainfall levels for which stable patterned states still exist. For the
level of noise imposed on the system, the opposite is true: higher noise levels
result in smaller step size. At sufficiently high noise levels, patches go extinct
one-by-one and the system tends to closely follow the boundary of the Busse
balloon.

We observe that during some wavenumber adaptations period doubling
occurs, meaning that half of the vegetation patches go extinct simultaneously
(Yizhaq et al., 2005). The occurrence of period doubling is related to the
position of the system in (a, κ)-space at which the wavenumber adaptation
is initiated, which is in turn determined by rate of change and noise level.
If wavenumber adaptation takes place close to the boundary of the Busse
balloon, which is the case for low rates of change or high noise levels, period
doubling does not occur. If wavenumber adaptation is initiated farther away
from the boundary of the Busse balloon, period doubling occurs, provided
that the system surpassed the period doubling instability PD and that period
doubling results in a stable patterned solution.

At low rainfall values we find that period doubling occurs more frequently
(even at high noise levels). Here the period doubling instability PD ap-
proaches the sideband instability SB (boundary of the Busse balloon). As a
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Figure 2.2: Plant density n in space for runs of the non-dimensional extended Klausmeier model
with v = 0 (flat terrain), for da

dt
= −10−4 (a) and da

dt
= 10−4 (b). The former run

starts from the homogeneously vegetated steady state. The latter is initiated with
the patterned solution of the first at a = 0.45. Spatially and temporally uncorrelated
multiplicative uniformly distributed noise with an amplitude of 5.10−5% is added to
the plant density every 1

4
year. The trajectories through the Busse balloon in (c) were

obtained by applying a discrete Fourier transformation with respect to x (see Appendix
2.B). In (d), the mean biomass is plotted for both runs. The solid and dashed black
lines are the uniform steady states.
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show the contours of constant uphill pattern migration speed.

result the period doubling instability PD is surpassed even at low rates of
change.

2.4.3 Competition between and rearrangement of patches

In the previous subsections we showed that wavenumber adaptation driven
by changing environmental conditions can be a discontinuous process: many
patches can go extinct simultaneously if a pattern destabilizes. In addition,
we found that rainfall, the rate of change in rainfall and the level of noise on
the system affect the number of patches that go extinct. Here we provide an
interpretation of the observed system responses by taking a closer look to
what happens during wavenumber adaptation.

Figure 2.5 shows plant biomass and surface water for part of the modeled
domain during one of the wavenumber adaptations in a model run with
declining rainfall. The figure shows that the extinction of one vegetation
patch results in growth of its neighbouring patches, which in turn negatively
affects their neighbours. This triggers a cascade, eventually resulting in
extinction of half of the patches.

The interaction between neighbouring patches in the extended Klausmeier
model can be explained by the competition for water. Vegetation patches
harvest water from an area bordered by water divides where dw

dx = 0. The
uptake of water by patches that share a water divide, which is controlled
by patch biomass, determines the position of the water divide. An increase
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from left to right from 10−7 to 10−4 to 10−2. The runs depicted in panels on the left
have the same rate of change in a, but an increasing noise amplitude (0, 5.10−5% and
0.05%).
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in patch biomass with respect to neighbouring patches will widen the water
harvesting area of a patch. The opposite occurs if a patch is weaker than
its neighbours. Since the water harvesting area affects water availability, it
feeds back to patch biomass eventually resulting in growth or extinction of a
patch.

We observe (Figure 2.6) that wavenumber adaptations during which less
than half of the vegetation patches goes extinct are accompanied by rapid
spatial rearrangement of patches, while no movement of patches can be
observed if half (period doubling) or all patches go extinct (desertification).
The movement of neighbouring patches during rearrangement seems to weaken
the feedbacks described above: if one patch goes extinct its neighbouring
patches fill up the created space, thereby diminishing the stress on remaining
patches.

Patch rearrangement generally occurs if wavenumber adaptation is initi-
ated between the sideband instability and the period doubling instability. At
low rainfall values, the period doubling instability approaches the sideband
instability. At these rainfall values rearrangement of patches becomes less
likely, as pattern destabilization almost coincides with the period doubling
instability PD. High rates of change in rainfall also do not allow for patch
rearrangement. High noise levels in contrast can trigger wavenumber adapta-
tion before the system crosses the period doubling instability PD, resulting
in patch rearrangement and one-by-one extinction of vegetation patches.

2.5 Discussion and conclusions

In this study we showed that patterned ecosystems systematically respond in
two ways to changing environmental conditions: 1) by adjusting patch biomass
(pattern amplitude) or 2) by changing pattern wavelength (wavenumber). In
the latter case patches go extinct or split up and may rearrange. In arid
ecosystems, gradual wavelength adaptation is constrained to conditions of
high rainfall, slow changes in rainfall and high levels of stochastic spatial
variation in biomass (noise). The adaptation process is less gradual under
conditions of either low rainfall, rapid change or low levels of noise. Such
conditions do not allow vegetation patches to rearrange, and facilitate the
simultaneous extinction of half the patches or even a transition to a degraded
state without any patches.

We found that an overview of stable patterned states, the Busse balloon,
is a powerful tool in understanding the response of patterned ecosystems to
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changing environmental conditions. If a system is in a stable patterned state
(i.e. in the Busse balloon), a pattern tends to solely adapt its amplitude, while
if the system leaves the Busse balloon, a pattern adapts its wavenumber. The
ability of patches to rearrange is determined by the period doubling instability.
Once the system surpasses this instability, patches do not rearrange, leading
to extinction of half or all the patches.

Our findings suggest that the response of patterned ecosystems to environ-
mental change does not only depend on the magnitude of change, but also
on the rate with which conditions change: patterned ecosystems may not be
able to respond in a gradual way to rapid environmental change. Similar
behaviour can be observed in a number of non-spatial models (e.g. Scheffer
et al., 2008; Luke and Cox, 2011). Nonlinear response to rapid environmental
change may as well occur in more comprehensive models that are used for
policy making. This may imply that merely setting targets for tolerable
change may not be sufficient to prevent ecosystem degradation and that to
ensure gradual ecosystem adaptation, identification of critical rates of change
is required as well.

Besides the rate of change in environmental conditions, the level of noise
to which the system is exposed seems to play an essential role in ecosystem
response. Our study shows that relatively small amplitude noise brings
heterogeneity in the population of patches which leads to more gradual
ecosystem adaptation to environmental change. Larger amplitude noise, on
the other hand, is known to be a cause of critical transitions (Horsthemke
and Lefever, 2006).
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Our findings are in agreement with a recent study by Deblauwe et al. (2011)
based on areal images of patterned vegetation in Sudan. Like Deblauwe
et al. (2011) we found that pattern wavenumber declines with increasing
aridity and that, when compared to flat terrain, a wider range of pattern
wavenumbers can be found on sloped terrain. Although our stability analysis
suggest that low wavenumber patterns are stable (and thus can be observed
in theory), Deblauwe et al. (2011) did not find such patterns. This might be
explained by the fact that, at least for flat terrain, low wavenumber patterns
are stable only for a relatively small rainfall range (Figure 2.1a). A second
explanation can be found in the steepness of the boundary of the Busse
balloon. Wavenumber adaptation forced by environmental changes generally
results in increased ecosystem resilience as it increases the distance to critical
thresholds (the boundary of the Busse balloon). However, if the boundary
of the Busse balloon is steep, as is the case for low wavenumber patterns at
low rainfall values (Figure 2.1a), the system remains close to the boundary
of the Busse balloon meaning that the increase in ecosystem resilience is
relatively small. As a result patterned arid ecosystems are relatively fragile
in this parameter region. Variations in seasonal and annual precipitation,
to which all arid ecosystems are exposed, can easily trigger desertification.
Consequently, low wavenumber patterns are less likely to be observed.

By assessing the existence and stability of patterned system states we went
one step further than Turing analysis, frequently applied in previous studies
(e.g. Klausmeier, 1999; HilleRisLambers et al., 2001; Meron et al., 2004; Gilad
et al., 2004; Kefi et al., 2008; Eppinga et al., 2009). In a wide range of
ecosystems, scale-dependent feedbacks are thought to involve local positive
feedbacks (Rietkerk and Van de Koppel, 2008). Such local positive feedbacks
allow stable patterned states to exist under conditions where uniform cover
can no longer be sustained. Analysis of patterns in these parameter regions is
of importance because of proximity to critical thresholds. Using conventional
Turing analysis, however, it is fundamentally impossible to do so. The
novel approach we presented in this paper is a promising way forward in
understanding the behaviour of spatially explicit ecosystem models under
these conditions.

The findings presented in this paper are in accordance with previous model
studies. Analysis of the original Klausmeier model by Sherratt and Lord
(2007) and Sherratt (2013a) already suggested the existence of patterned
states in parameter regions where Turing unstable states are absent (see also
Rietkerk et al., 2002) and that hysteresis can occur in pattern wavenumber
and migration speed. In contrast to the study by Sherratt (2013a) we
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used wavenumber as state variable instead of migration speed. In practice,
wavenumber is a property that is easier to assess than migration speed
(Couteron and Lejeune, 2001; Deblauwe et al., 2012). In addition, migration
speed cannot be used as state variable if all patterns are stationary. This
is the case on flat terrain in the extended Klausmeier model, but on sloped
terrain patterns can be fixed as well (Thompson et al., 2008; Dunkerley,
2013). The existence of a multitude of stable patterned states has been
demonstrated in other models as well (Sherratt, 2013a; Bel et al., 2012;
Zelnik et al., 2013; Meron, 2012). In this paper we showed that transitions
between stable patterned states can be forced by changing environmental
conditions. Previous studies show that such transitions can also be triggered
by disturbances in the form of the uniform biomass removal (Meron, 2012)
or patch removal (Zelnik et al., 2013). Although our findings seem to be
in line with observations (Deblauwe et al., 2011), most findings remain to
be tested using areal images and field data. Empirical proof for a Busse
balloon requires a constant pattern wavelength to be observed for a range of
environmental conditions or, alternatively, a range of pattern wavelengths
to be observed for a fixed set of environmental conditions. It would also
be interesting to see if competition between neighbouring patches indeed
occurs and how the competition strength depends on environmental stress.
If time series of areal images are available, it may also be possible to observe
hysteresis in pattern wavelength.

To get more insight in the behaviour of real ecosystems we propose that
future studies apply stability analysis on patterned system states of other
(more realistic) models. Constructing Busse balloons for other models will
allow to relate findings to measurable parameters. Stability analysis of models
in which multiple pattern forming mechanisms are captured, such as the
model by Gilad et al. (2004), would allow studying how the relative strength
of these mechanisms affects the global behaviour of patterned ecosystems
(Kinast et al., 2014). In addition, future studies could consider two spatial
dimensions as this may qualitatively affect the model behaviour described
in this paper. Accounting for more than one spatial dimension in stability
analysis is mathematically challenging, since more complex spatial patterns
can evolve (gaps, labyrinths and spots; Pearson, 1993; Rietkerk et al., 2002)
and more destabilization mechanisms may potentially destabilize a patterned
system state (Hoyle, 2006). Finally, as soon as bare ground forms between
patches, the movement and stability of patches can be described by pulse
interaction (see Doelman and Kaper, 2003; Sun et al., 2005, and references
therein). This may provide insight in the ecologically relevant process of
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wavenumber adaptation forced by environmental change.
The changes in climate projected for the coming decades (Solomon et al.,

2007) are likely to affect the functioning of patterned ecosystems worldwide.
We showed that in order to understand the behaviour of patterned ecosystems
that are subject to change, mathematical techniques are required that go
beyond conventional Turing analysis. By assessing the stability of patterned
ecosystem states and by studying the relevant destabilization mechanisms we
were able to explain when and how arid ecosystems may adapt their pattern
wavelength. Identification of the Busse balloon, together with the period
doubling instability, provides a theoretical framework for future theoretical
and empirical studies. These studies may provide enhanced insights in the
response of other ecological models to change, the response of real ecosystems
to change, and the ecological mechanisms responsible for this response.
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Appendix 2.A A non-dimensional extended
Klausmeier model.

The extended Klausmeier model is given by Equations 2.5 and 2.6. In Table
2.1, the values of the parameters are listed for both grass and trees, as
estimated by Klausmeier (1999). The diffusion term was calibrated to obtain
patterns in a realistic parameter range. A non-dimensional version of the
model (Equations 2.7 and 2.8) is used throughout the paper. Table 2.2 shows
how the dimensionless parameters can be obtained.

∂W

∂T
= A− LW −RWN2 + V

∂W

∂X
+ E

∂2WΓ

∂X2
(2.5)

∂N

∂T
= RJWN2 −MN +D

∂2N

∂X2
(2.6)
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2.B Wavenumber plotting by fast Fourier transform

∂w

∂t
= a− w − wn2 + v

∂w

∂x
+ e

∂2wγ

∂x2
(2.7)

∂n

∂t
= wn2 −mn+

∂2n

∂x2
(2.8)

Table 2.1: Values and units for the variables and parameters of the extended Klausmeier model
(Equations 2.5 and 2.6). Values adopted from Klausmeier (1999). E was calibrated to
obtain patterns in a realistic parameter range, according to Deblauwe et al. (2008).

Parameter/Variable Value (grass) Value (tree) Unit

W kg m−2(=mm)
N kg m−2

X m
T year
A 0 - 950 0 - 950 kg m−2 year−1

(= mm year−1)
L 4 4 year−1

R 100 1.5 kg m−2 year−1 kg−2

(=mm year−1 kg−2)
V 0 or 365 0 or 365 m year−1

E 500 500 m2 year−1 mm1−Γ

Γ 1 1 -
J 0.003 0.002 kg kg−1

(=kg L−1)
M 1.8 0.18 year−1

D 1 1 m2 year−1

Appendix 2.B Wavenumber plotting by fast Fourier
transform

In this appendix we explain how we compute the trajectories through
(parameter,κ)-space, as depicted in the main text, by using the discrete
or fast Fourier transform.

In the model runs the plant biomass n(x) is represented by a vector n(j),
j = 1, 2, ..., N , of N = 1024 elements and the spatial domain size is L = 1000.

The vector can be expressed as a linear combination of vectors vl(j) = e
2πil
N
j ,
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2 Beyond Turing

Table 2.2: Physical meaning and values for the variables and parameters of the non-dimensional
extended Klausmeier model (Equations 2.7 and 2.8)

Parameter/Variable Physical meaning Value (grass) Value (tree)

w WR1/2L−1/2J 0.015W 0.0012W

n NR1/2L−1/2 5N 0.61N

x XL1/2D−1/2 2X 2X
t TL 4T 4T

a AR1/2L−3/2J 0.00375A 0.0003062A
m ML−1 0.25M 0.25M

v V L−1/2D−1/2 0.5V 0.5V
e ED−1 E E
γ Γ Γ Γ

where l = 0, 1, 2, ..., N − 1. The vl represent sinusoidals with wavenumber
κ = 2πl

L . The weight of vl in n can be computed by the discrete Fourier
transform

Y (κ) =
N∑
j=1

n(j)vl(−j). (2.9)

The absolute value of Y (κ) is a measure of how much n resembles a
sinusoidal with wavenumber κ. If a single Y (κ) has a large absolute value
compared to all other Y (κ 6= 0), then the state is (nearly) periodic with
wavenumber κ.

The trajectories through (parameter,κ)-space, as depicted in the main text,
were obtained by picking the wavenumber where |Y | attained its maximum,
κ = 0 excluded. The wavenumber is only plotted when the maximum is
relatively large, which suppresses plotting during transient dynamics.

Figure 2.7 shows that during wavenumber adaptation the spread in κ
increases. After wavenumber adaptation the spread decreases slowly. As
the pattern settles, the maximum wavenumber can still change. As l is an
integer, κ can only attain certain values. Therefore the settling of the pattern
can result in small jumps in pattern wavenumber.
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Figure 2.7: Plant biomass n against space x before, during and after wavenumber adaptation in
the model run with declining rainfall of Figure 2.2 and the Fourier transform of the
corresponding vectors.
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2 Beyond Turing

Appendix 2.C General equations for perturbations.

We derive equations for perturbations of a general system state in the extended
Klausmeier model. These equations will be of use in Appendix 2.D.2, 2.D.3
and 2.E.2. For ease of the computations we restrict to the linear diffusion
case γ = 1. Let (w, n) be a system state that is perturbed by (w′, n′). We
obtain an expression for the governing equations of the perturbation by the
following calculations:

∂w′

∂t
=
∂(w + w′)

∂t
− ∂w

∂t

=e
∂2(w + w′)

∂x2
+ v

∂(w + w′)

∂x
+ a− (w + w′)− (w + w′)(n+ n′)2

−
(
e
∂2w

∂x2
+ v

∂w

∂x
+ a− w − wn2

)
=e

∂2w′

∂x2
+ v

∂w′

∂x
− w′(1 + n2)− 2n′wn− 2w′n′n− n′2w − w′n′2

≈e∂
2w′

∂x2
+ v

∂w′

∂x
− w′(1 + n2)− 2n′wn (2.10)

∂n′

∂t
=
∂(n+ n′)

∂t
− ∂n

∂t

=
∂2(n+ n′)

∂x2
+ (w + w′)(n+ n′)2 −m(n+ n′)

−
(
∂2n

∂x2
+ wn2 −mn

)
=
∂2n′

∂x2
+ w′n2 + n′(2wn−m) + 2w′n′n+ n′

2
w + w′n′

2

≈∂
2n′

∂x2
+ w′n2 + n′(2wn−m) (2.11)

The final approximate equalities are equalities in a linear approximation: for
small perturbations (w′, n′) the products w′n′ and n′2 are negligible.

In an abstract formulation equations 2.10 and 2.11 can be rewritten as:

∂

∂t

(
w′

n′

)
= A

(
w′

n′

)
(2.12)

where the so-called spectrum, a generalization of the concept of eigenvalues,
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of the differential operator A =

(
e ∂

2

∂x2 +v ∂
∂x
−1−n2 −2wn

n2 ∂2

∂x2 +2wn−m

)
determines

the stability of (w, n).

Appendix 2.D Analysis of the homogeneous steady
states.

For completeness we will give a thorough analysis of the homogeneous steady
states of the extended Klausmeier model. This also serves the purpose of
showing how easily results can be obtained by hand in this case, compared
to the restricted possibilities for the analysis of patterns in Appendix 2.E.
The results of Section 2.D.1 and 2.D.2 also hold for γ = 2.

2.D.1 Existence of spatially homogeneous steady states

If w and n are spatially homogeneous, gradients in w and n are absent, and
the advection-diffusion terms of Equations 2.1 and 2.2 vanish. Since only a
single type of derivative remains, the partial differential equations become
ordinary differential equations. The steady uniform states can then be found
by solving Equations 2.13 and 2.14.

dw

dt
= a− w − wn2 = 0 (2.13)

dn

dt
= wn2 −mn = (wn−m)n = 0 (2.14)

Clearly n̄B = 0 solves Equation 2.14 and consequently w̄B = a. This is a
bare desert state, as plant biomass equals zero. Alternatively Equation 2.14
is solved if n = m

w . Substituting this in Equation 2.13 and multiplying with
−w we obtain the quadratic equation w2 − aw + m2 = 0. This quadratic
equation can be solved to obtain two solutions for w and from n = m

w the
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Figure 2.8: Homogeneous steady states of the (extended) Klausmeier model expressed in plant
biomass n as function of rainfall a for m = 0.45.

corresponding solution for n can be computed. The outcome is given by:

w̄S =
2m2

a−
√
a2 − 4m2

(2.15)

n̄S =
a−
√
a2 − 4m2

2m
(2.16)

w̄N =
2m2

a+
√
a2 − 4m2

(2.17)

n̄N =
a+
√
a2 − 4m2

2m
(2.18)

Here the argument of the square root needs to be positive, so these states
only exist for a ≥ 2m. Note that the two states coincide at a = 2m, in fact
here a so-called saddle-node bifurcation takes place. In the following section
we will show that (w̄S , n̄S) has a stable and an unstable direction (saddle,
unstable) and (w̄N , n̄N ) either has two stable or unstable directions (node).
Note that we have covered all possible cases of Equations 2.13 and 2.14 and
thus no other homogeneous steady states can exist. Moreover, all the steady
states are non-negative. We will continue by studying their stability.
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2.D Analysis of the homogeneous steady states.

2.D.2 Stability of the homogeneous steady states against
homogeneous perturbations

By perturbing the steady states obtained in Appendix 2.D, their stability
can be determined. If a perturbation grows over time, the steady state
is unstable. The steady state is stable, if all perturbations decay. In this
Appendix, we show how linear stability analysis can be used to assess the
stability of uniform system states to homogeneous perturbations. We will do
this by using the equations derived for perturbations in Appendix 2.C.

Since the perturbations are assumed to be homogeneous Equations 2.10
and 2.11 simplify to:

∂w′

∂t
=− w′(1 + n̄2)− 2n̄′wn̄ (2.19)

∂n′

∂t
=w′n̄2 + n′(2w̄n̄−m) (2.20)

This can be compactly written as:(
dw′

dt
dn′

dt

)
=

(
−1− n̄2 −2w̄n̄
n̄2 2w̄n̄−m

)(
w′

n′

)
(2.21)

where the matrix is readily identified as the Jacobian matrix J of the reaction
terms. As is well-known, the stability can be determined by looking at the
real parts of the eigenvalues of the Jacobian.

For the bare state plugging in n̄B = 0 in the Jacobian matrix yields
J =

(−1 0
0 −m

)
. The eigenvalues can now be read of from the diagonal

(λ1 = −1, λ2 = −m) so the bare state is always stable (for m > 0).
In case of the saddle-node states we recall that nw = m (Appendix 2.D.1).

So the Jacobian matrix becomes J =

(
−1−n̄2

S,N −2m

n̄2
S,N m

)
. The eigenvalues can

be computed directly by solving the characteristic equation involving the
determinant det:

det(J − λI) = det

(
−1− n̄2 − λ −2m

n̄2 m− λ

)
= λ2 + λ(1 + n̄2 −m)−m+mn̄2 = 0 (2.22)
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Solving this we obtain:

λ± = −1

2

(
1 + n̄2 −m

)
±
√
m (1− n̄2) +

1

4
(1 + n̄2 −m)2 (2.23)

Which has the form:

λ± = α±
√
β + α2 (2.24)

For this general form it holds:

β > 0 β < 0

α > 0 <(λ+) > 0 <(λ+) > 0
<(λ−) < 0 <(λ−) > 0

α < 0 <(λ+) > 0 <(λ+) < 0
<(λ−) < 0 <(λ−) < 0

We first show that (w̄S , n̄S) has both a stable and an unstable direction
(saddle, unstable), as was claimed in Appendix 2.D.1. For this it suffices to
show that β = m(1− n̄2

S) > 0. Since a > 2m (Appendix 2.D.1)

w̄S =
2m2

a−
√
a2 − 4m2

=
2m2

(
a+
√
a2 − 4m2

)
a2 − a2 + 4m2

=
a

2
+

1

2

√
a2 − 4m2 > m

(2.25)

Now n̄S = m
w̄S

< 1 so β > 0.
Second we show that (w̄N , n̄N ) is a node (i.e. is either stable or unstable in

both directions), as was claimed in Appendix 2.D.1, but we will not directly
determine the stability. This is equivalent to β = m(1 − n̄2

N ) < 0. Since
a > 2m we have

n̄N =
a+
√
a2 − 4m2

2m
=

a

2m
+

1

2m

√
a2 − 4m2 > 1 (2.26)

So indeed β < 0.
Finally the eigenvalues belonging to the node can have positive (unstable)

or negative (stable) real parts. Both eigenvalues are negative if and only
if α = −1

2(1 + n̄2
N −m) < 0, this is automatically satisfied if m < 1, so in

particular if m = 0.45. For general m it can be calculated that the stability
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Figure 2.9: Region in parameter space where (w̄N , n̄N ) is stable, unstable or does not exist.

boundary is given by pairs (m, a) that satisfy:

a =
m2

√
m− 1

and m ≥2 (2.27)

This boundary is plotted in Figure 2.9.
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Figure 2.10: The maximum real part of λ for the spatially uniform steady states plotted against
a. Perturbations are assumed to be spatially homogeneous and m = 0.45.

2.D.3 Turing analysis of the steady states

In the full model the steady states are also subject to heterogeneous perturb-
ations. States that were thought of as being stable against homogeneous
perturbation may be unstable against a wider class of perturbations. For
simplicity we restrict to γ = 1.

The usual approach is to assume that the spatial dependence of the
perturbation has the form of a sinusoid: we represent it by a complex
exponential eiκx.1 This is convenient because d

dxe
iκx = iκeiκx and d2

dx2 e
iκx =

−κ2eiκx. Substituting
(
w′(t,x)
n′(t,x)

)
= eiκx

(
w̃(t)
ñ(t)

)
in Equation 2.10 and 2.11 and

dividing by eiκx yields:

∂w̃

∂t
=− κ2ew̃ + iκvw̃ − w̃(1 + n2)− 2ñwn (2.28)

∂ñ

∂t
=− κ2ñ+ w̃n2 + ñ(2wn−m) (2.29)

1If there are only second order spatial derivatives present, assuming the form cos(κx) or
sin(κx) is equivalent.
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This can be written in a single matrix equation:(
dw̃
dt
dñ
dt

)
=

(
−κ2e+ iκv − 1− n̄2 −2w̄n̄

n̄2 −κ2 + 2w̄n̄−m

)(
w̃
ñ

)
(2.30)

The justification of the assumption that the perturbation is sinusoidal is
given by the Fourier transform, which links the spectrum of the operator A
in the abstract formulation Equation 2.12 to the eigenvalues of the above
matrix.

For the bare state n̄B = 0, so the matrix simplifies to
(
−κ2e+iκv−1 0

0 −κ2−m

)
so λ1 = −κ2e + iκv − 1 and λ2 = −κ2 −m. Since the real parts <(λ1) =
−κ2e − 1 and <(λ2) = −κ2 −m both remain negative for any κ, the bare
state is also stable against heterogeneous perturbations. Because the saddle
is already unstable against homogeneous perturbations we focus our attention

on the node. Since w̄N n̄N = m the matrix becomes
(
−κ2e+iκv−1−n̄2

N −2m

n̄2
N −κ2+m

)
,

from which we can obtain the eigenvalues by solving the dispersion relation:

det

(
−κ2e+ iκv − 1− n̄2

N − λ −2m
n̄2
N −κ2 +m− λ

)
= 0 (2.31)

This again yields a quadratic equation in λ, which can be solved for λ.
The eigenvalues λ are now not only a function of model parameters, but also
a function of wavenumber κ. Figure 2.11 shows solutions of Equation 2.31
(which depends on a through n̄N ) for several values of a for m = 0.45. The
curves pass through the real axis between a = 4 and a = 2.5 in both the
case v = 0 and v = 182.5, the node becomes Turing unstable somewhere in
between (precise values are given in the caption of Figure 2.1).

Appendix 2.E Analysis of patterns

In the previous appendix all of the analysis could be done by hand. This is
very much in contrast to the analysis of patterns. Here we give some results
that can be obtained analytically for the extended Klausmeier model.

2.E.1 Existence of patterns

Here we derive that patterns are solutions of the Equations 2.3 and 2.4.
These equations are solved numerically.
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Figure 2.11: The maximum real part of λ for heterogeneous perturbations of (w̄N , s̄N ), plotted as
function of κ, for different values of a and for v = 0 (solid lines) and v = 182.5 (dotted
lines), m = 0.45. The boundary of the Turing prediction region depicted in Figure
2.1 is located at the intersection points of the curves with the x-axis. The maxima of
the curves correspond to the most unstable wavenumber.

In general, patterned states may migrate uphill (if v 6= 0). We will denote
the migration speed (in the direction of increasing x) of these so-called
wavetrains by s. Allowing for s = 0, any pattern can be written in the form
(w(t, x), n(t, x)) = (wp(x− st), np(x− st)) = (wp(ξ), np(ξ)), where wp and
np are periodic functions describing the wave profile and ξ = x − st is a
comoving frame coordinate. By using the chain rule, e.g.

∂w(x, t)

∂t
=
dwp(ξ)

dξ

∂ξ

∂t
= −sdwp

dξ
(2.32)

after substituting the forms in Equations 2.1 and 2.2 we obtain

0 =a− wp − wpn2
p + (v + s)

dwp
dξ

+ e
d2wγp
dξ2

(2.33)

0 =wpn
2
p −mnp + s

dnp
dξ

+
d2np
dξ2

(2.34)

which are the equations we set out to find.

52



2.E Analysis of patterns

2.E.2 Stability of patterns

We will study the stability of a pattern (w(t, x), n(t, x)) in the case γ = 1,
so the equations for the perturbation 2.10 and 2.11 hold. We show these
equations again, now with explicit dependence on the coordinates:

∂w′(t, x)

∂t
=e

∂2w′(t, x)

∂x2
+ v

∂w′(t, x)

∂x
− w′(t, x)

(
1 + n(t, x)2

)
− 2n′(t, x)w(t, x)n(t, x) (2.35)

∂n′(t, x)

∂t
=
∂2n′(t, x)

∂x2
+ w′(t, x)n(t, x)2 + n′(t, x) (2w(t, x)n(t, x)−m)

(2.36)

Here w and n are not constant, which prevents us from applying a sinusoidal
substitution as in Turing analysis (Appendix 2.D.3). As in Appendix 2.E.1 we
write (w(t, x), n(t, x)) = (wp(ξ), np(ξ)) with ξ = x− st. To make optimal use
of this form we apply a change of coordinates (t, x) 7→ (t, ξ). Simultaneously
we substitute (w′, n′) = eλt (w̃(ξ), ñ(ξ)) and after division by eλt we obtain:

λw̃ =e
d2w̃

dξ2
+ (v + s)

dw̃

dξ
− w̃(1 + n2

p)− 2ñwpnp (2.37)

λñ =
d2ñ

dξ2
+ s

dñ

dξ
+ w̃n2

p + ñ(2wpnp −m) (2.38)

This is a system of two second order ordinary differential equations. After

defining q̃ =
dw̃

dξ
and r̃ =

dñ

dξ
it can be rewritten as a first order system of

four ordinary differential equations:

d

dξ


w̃
q̃
ñ
r̃

 =


0 1 0 0

λ+1+n2
p

e
−v−s
e

2wpnp
e 0

0 0 0 1
−n2

p 0 m− wpnp −s




w̃
q̃
ñ
r̃

 (2.39)

Since the matrix of coefficients is periodic, we are ready to use Floquet
theory. Through Floquet theory it is possible to express the spectrum as the
union of curves of eigenvalues of a related problem. The spatial part of the
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perturbations that act as eigenfunctions satisfy:

w̃

(
ξ +

2π

κ
; ν

)
=eiνw̃(ξ; ν) (2.40)

ñ

(
ξ +

2π

κ
; ν

)
=eiν ñ(ξ; ν) (2.41)

where κ is now the pattern wavenumber and ν ∈ (−π, π]. Note that 2π
κ is

the wavelength of the pattern. A corresponding curve of eigenvalues was
exhibited as a function of ν in Figure 2.1c, for different values of a. Regarding
the stability we will not go into more details but note that the procedure for
assessing stability is explained further in Rademacher et al. (2007).

A special case is when ν = π. Then eiν = −1. It follows that w̃(ξ+ 4π
κ ;π) =

−w̃(ξ+ 2π
κ ;π) = w̃(ξ;π), and similarly for ñ, so the perturbation has twice the

wavelength of the pattern. When the real part of the corresponding eigenvalue
becomes positive, the pattern can be destabilized by such a perturbation and
the period will be doubled (period doubling instability).
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3 How will increases in rainfall
intensity affect semiarid
ecosystems?

Siteur, K., Eppinga, M. B., Karssenberg, D., Baudena, M., Bierkens, M. F. P.
and Rietkerk, M. (2014). How will increases in rainfall intensity affect semi-
arid ecosystems? Water Resources Research 50 (7):5980-6001.

Abstract

Model studies suggest that semiarid ecosystems with patterned vegetation can respond

in a non-linear way to climate change. This means that gradual changes can result in a

rapid transition to a desertified state. Previous model studies focused on the response of

patterned semiarid ecosystems to changes in mean annual rainfall. The intensity of rain

events, however, is projected to change as well in the coming decades. In this paper we

study the effect of changes in rainfall intensity on the functioning of patterned semiarid

ecosystems with a spatially explicit model that captures rainwater partitioning and runoff-

runon processes with simple event based process descriptions. Analytical and numerical

analyses of the model revealed that rainfall intensity is a key parameter in explaining

patterning of vegetation in semiarid ecosystems as low mean rainfall intensities do not

allow for vegetation patterning to occur. Surprisingly, we found that, for a constant

annual rainfall rate, both an increase and a decrease in mean rainfall intensity can trigger

desertification. An increase negatively affects productivity as a greater fraction of the

rainwater is lost as runoff. This can result in a shift to a bare desert state only if the

mean rainfall intensity exceeds the infiltration capacity of bare soil. On the other hand, a

decrease in mean rainfall intensity leads to an increased fraction of rainwater infiltrating in

bare soils, remaining unavailable to plants. Our findings suggest that considering rainfall

intensity as a variable may help in assessing the proximity to regime shifts in patterned

semiarid ecosystems and that monitoring losses of resource through runoff and bare soil

infiltration could be used to determine ecosystem resilience.
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3 Rainfall intensity and semiarid ecosystems

3.1 Introduction

In semiarid environments plants can locally modulate their environment in
a way that enables better access to resources, such as nutrients and water,
thereby acting as so called ecosystem engineers (Jones et al., 1994). If the
positive effect of plants on enhanced access to resources outweighs the negative
effect of increased resource uptake, this may result in a positive feedback
loop: an increase in plant biomass results in higher resource availability and
consequently enhanced plant growth. This mechanism allows high plant
densities to be maintained under harsher conditions, but it can also result
in bistability (or multistability) of the ecosystem (Rietkerk et al., 1997),
meaning that alternative stable system states exist under a given range of
external conditions (Lewontin, 1969). Changes in external conditions can
alter the stability and the number of system states. In the case of semiarid
ecosystems, increasing grazing pressure or decreasing resource input may push
the system over a critical threshold, resulting in a sudden critical transition
from a vegetated state to a bare state (Noy-Meir, 1975; Rietkerk et al.,
1997). As such regime shifts are accompanied by significant and irreversible
losses in biological productivity, they are often related to the process of
desertification (e.g. Kéfi et al. (2007); Von Hardenberg et al. (2001); although
formal definitions of desertification are more complex and include changes in
soil resources, soil geochemistry and vegetation composition as pointed out
by Schlesinger et al. (1990) and D’Odorico et al. (2013)).

Although it is generally hard to determine whether ecosystems will indeed
respond in such a non-linear way to changing environmental conditions,
model studies show that particular periodic spatial patterns may be used as
indicator for alternative stability (Rietkerk et al., 2004; Kéfi et al., 2010).
This is the case if local facilitative interactions, responsible for non-linear
system behaviour (DeAngelis et al., 1980), are linked to distal competitive
interactions that are responsible for pattern formation (Gierer and Meinhardt,
1972; Rietkerk and Van de Koppel, 2008). In semiarid ecosystems such a
link between between local facilitative and distal competitive interactions
exists and yields so called scale-dependent feedbacks (Rietkerk and Van de
Koppel, 2008). More specifically, in these ecosystems plants can locally
enhance the infiltration capacity of a soil by preventing crust formation and
changing the soil structure. On sloped terrain, surface water accumulates
on the barren or sparsely vegetated impenetrable soils during intense rain
events, and flows downhill to the more densely vegetated soils where it can
infiltrate, resulting in increased productivity. The depletion of surface water
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by vegetation uphill on the other hand has a negative effect on infiltration and
plant growth downhill. This particular scale dependent feedback, referred to
as the resource concentration mechanism (Rietkerk et al., 2004), can result
in the formation of regularly spaced vegetation bands perpendicular to the
slope separated by interbands of bare soil (Klausmeier, 1999; Rietkerk et al.,
2002, Figure 3.1).

A large body of spatially explicit mechanistic models have been published
that describe pattern formation in semiarid ecosystems (see for example
Lefever and Lejeune (1997); Klausmeier (1999); Von Hardenberg et al. (2001);
Rietkerk et al. (2002); Gilad et al. (2004) and Borgogno et al. (2009) for a
review). These models were successful in identifying possible mechanisms
driving pattern formation in semiarid ecosystems such as the resource con-
centration mechanism, and provided insights in the non-linear response of
these systems when subject to gradual changes in mean annual rainfall.

Changes in annual and seasonal rainfall volumes in arid and semiarid
regions, as projected by global climate models, are however subject to much
uncertainty. Projections of changes in rainfall intensity in contrast, show
strong trends (Tebaldi et al., 2006; Solomon et al., 2007). For the Sahel
region and the Horn of Africa for example, a majority of the global climate
models predicts significant elevations in rainfall intensity at the end of this
century with respect to the 1980s and 1990s (Tebaldi et al., 2006; Solomon
et al., 2007).

Model studies show that spatio-temporal patterns in infiltration and soil
moisture are to a large extent determined by rainfall intensity and storm
size. Rodriguez-Iturbe et al. (1999) show that average soil moisture increases
with rainfall depth, and that there is bell shaped relation between rainfall
depth and variance. A study by Thompson et al. (2011) shows that the
spatial infiltration patterns in patchy arid ecosystems are strongly controlled
by rainfall intensity. During intense events, enhanced infiltration occurs
for a large portion of vegetated sites, whereas during low intensity events
increased recharge occurs only at the edges of vegetation patches. Although
hydrological models show that rainfall intensity plays a key role in rain water
partitioning and lateral surface water redistribution, it is unknown if and
exactly how the projected changes in rainfall intensity are going to affect the
productivity and functioning of patterned semiarid ecosystems.

Modelling the effect of changes in rainfall intensity on these ecosystems
requires the coupling of processes that act on the timescale of a single rain
event with processes, such as plant growth, that act on much longer timescales.
The current spatially explicit models mostly capture rainfall in a continuous
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3 Rainfall intensity and semiarid ecosystems

manner, and thereby they do not explicitly deal with this issue (Konings
et al., 2011). These models, as well the few that do consider rainfall to consist
of separate events (Kletter et al., 2009; Ursino and Contarini, 2006), also
assume infiltration to depend on surface water depth (e.g. HilleRisLambers
et al., 2001; Rietkerk et al., 2002; Gilad et al., 2004; Meron et al., 2007), which
is in contrast with conventional depth independent infiltration models (e.g.
Horton, 1939; Philip, 1957). The study by Thompson et al. (2011), shows
that this assumption leads insensitivity of surface water redistribution to
changes in rainfall intensity. The use of depth dependent infiltration models
may therefore underestimate the potential effects such changes may have on
ecosystem functioning.

In this paper we study the response of semiarid ecosystems to changes
in rainfall intensity using a spatially explicit version of the water limitation
model by Rietkerk et al. (1997) that is coupled with a hydrological hillslope
model that explicitly describes depth independent infiltration and infiltration
excess (Hortonian) runoff generation on an event basis with simple conditional
rules. The full model acknowledges both the processes that operate on short
temporal scales, such as rainwater partitioning and redistribution, as well
as processes that operate on longer temporal scales, such as plant growth.
Temporal upscaling of short term processes and a minimalistic modelling
approach enabled analytical analysis of the model.

3.2 Model description

To study the role of rainfall intensity in semiarid ecosystems we need to
account for relatively slow processes that operate on long temporal scales,
such as plant growth, as well as fast processes that operate on short temporal
scales, such as the partitioning and redistribution of rainwater during a rain
event.

The slow long-term processes are modelled using a spatially extended
version of the water-limitation model by Rietkerk et al. (1997), which describes
the essential dynamics of plant density and available soil moisture in a
minimalistic way (Rietkerk, 1998, p.4-5), thereby enabling detailed analytical
analysis. Rainwater partitioning and the runoff-runon processes are fast
short-term processes that are modelled with event based descriptions in
the form of simple conditional rules. Temporal upscaling of the obtained
infiltration rates yields a continuous formulation for infiltration, which is
then used in the spatially extended version of the water-limitation model by
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3.2 Model description

Figure 3.1: Periodically banded vegetation in Sudan (11◦17’ N, 28◦13’ E, mean annual precip-
itation: 450 mm year−1) (Deblauwe et al., 2008). c©2013 Google Earth. c©2013
Cnes/Spot Image.
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3 Rainfall intensity and semiarid ecosystems

Rietkerk et al. (1997).
In subsections 3.2.1 and 3.2.2, we will describe the water-limitation model.

In Section 3.2.3 infiltration for uniform system states will be discussed and in
Section 3.2.4 we account for spatial heterogeneity by including runoff-runon
processes. The mechanism governing spatial patterning in this model is
the resource concentration mechanism mentioned earlier, however, spatial
feedbacks in our model differ from previous models because of the alternative
modelling approach, as we will briefly discuss in Section 3.2.5.

3.2.1 Soil moisture dynamics

Soil moisture dynamics comprise infiltration, plant uptake, soil evaporation
and percolation losses, and lateral soil water movement. The change in
available soil water W [mm] over time t [year] at location x [m] on the
one-dimensional hillslope is modelled with Equation 3.1.

∂W

∂t
= iag − u

W

W + k
P − rW + dW

∂2W

∂x2
(3.1)

Here iag is the mean aggregated infiltration rate of water into the soil [mm
year−1], further discussed in Section 3.2.3 and 3.2.4. The second term
represents the uptake of water by plants, which is assumed to depend on local
plant density. Here u is the maximum specific soil water uptake [mm m2 g−1

year−1], P is the plant density [g m−2] and k is the half saturation constant
of soil water uptake [mm]. Losses in available soil water are modelled with
the third term, in which r is the specific soil water loss due to soil evaporation
and percolation [year−1]. The last term represents soil water movement, with
dW being the diffusion rate of soil water [m2 year−1] and x space [m]. Note
that soil water is assumed to diffuse in a linear way and that also percolation
and evaporation losses depend linearly on soil water availability (following
Rietkerk et al., 2002).

3.2.2 Plant growth

In the model, plant dynamics is captured by growth, mortality and grazing,
and plant dispersion. The change in plant density P is given by Equation
3.2.

∂P

∂t
= cu

W

W + k
P −mP + dP

∂2P

∂x2
(3.2)
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3.2 Model description

The first term represents plant growth, which is linearly related to water
uptake. Here c is the conversion of water uptake by plants to plant growth
[g mm−1 m−2]. The second term covers both mortality and grazing losses,
with m being the specific plant loss due to mortality and herbivory [year−1].
Plant dispersal is modelled with the last term. Here dP is the dispersion rate
of plants [m2 year−1].

3.2.3 Infiltration neglecting runon (for uniform case and
interbands)

In this subsection we will solely consider the partitioning of rainwater into
infiltration and runoff, and neglect runon, which we define as the infiltration
of runoff generated uphill. This assumption is valid for uniform system states
and interbands, as we will explain later.

The partitioning of rainwater into infiltration and runoff differs per rain
event. In this model the infiltration rate during a given event iev [mm hour−1]
is limited by either the infiltration capacity of the soil icap [mm hour−1] or
the intensity of the rain event pev [mm hour−1], which is considered to be a
random variable. In the former case not all rainwater infiltrates, but part
is lost in the form of runoff. The infiltration rate iev for a rain event with
intensity pev in a soil with infiltration capacity icap is given by:

iev(x, pev) =

{
pev if pev < icap(x)

icap(x) pev ≥ icap(x)
(3.3)

By using this relationship, we assume steady state infiltration conditions
(Karssenberg, 2006). In other words: during the rain event iev, pev and icap
are constant over time. For soils with high sorptivity, this time independency
results in underestimation of infiltration during short events and overestim-
ation during long events. On average however, the error will be negligible
provided that rainfall intensity and event duration are mutually independent.
Notice that, although we consider infiltration to be independent of surface
water depth (Horton, 1939; Philip, 1957), there may be situations, including
soil cracking and crusting, in which surface water depth is important (Dunne
et al., 1991; Fox et al., 1998; Novak et al., 2000).

The interarrival time between rain events is assumed to be sufficiently
large, so that infiltration conditions, which are affected by antecedent soil
moisture content, are similar for all events. With this assumption we neglect
possible interactions between storm events, which in allows analytical analysis
of the model. Infiltration capacity icap increases with plant density P (Van
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3 Rainfall intensity and semiarid ecosystems

Wijngaarden, 1985; Rietkerk et al., 2000; Thompson et al., 2010a) and is
modelled with Equation 3.4.

icap(x) = i0 + aP (x) (3.4)

Here i0 is the infiltration capacity of bare soil [mm hour−1], and a is the
increase of infiltration capacity with plant density [mm m2 hour−1 g−1].

We assume rainfall intensity pev to be an exponentially distributed random
variable with mean µpev [mm hour−1] (Hoogmoed, 1981) that is uniform in
space. Its probability density function is given by Equation 3.5.

f(pev) =
1

µpev
e
− pev
µpev (3.5)

The fact that pev is a random variable, makes iev a random variable (if
icap > 0). In other words: the amount of water that infiltrates is different for
each rain event. Although we consider infiltration to be a random process,
the equilibrium analysis and model runs will be done using the expected value
(or long term average) of iev. Thereby we assume the response of vegetation
to individual rain events is slow. Working with the expected infiltration rate
makes the model deterministic and allows studying the system’s equilibria
and the effects of changes in mean rainfall intensity on the system. Note,
however, that the obtained solutions for P and W presented in Section 3.3
only approximate the expected values of P and W at first order. This means
that we neglect the effects of variance and higher order moments of infiltration
rate on available soil water and plant productivity.

The expected infiltration rate E(iev) is obtained by summing the infiltra-
tion rates (Equation 3.3) over all possible event intensities (pev > 0) while
multiplying with the probability of occurrence of the events (Equation 3.5).
As shown in Appendix 3.A this yields:

E(iev(x, pev)) = µpev

(
1− e−

icap(x)

µpev

)
(3.6)

If we assume the arrival of rain events to be a Poisson process (Bierkens and
Puente, 1990) and the events to have a mutually independent duration and
intensity (Hoogmoed, 1981), then the mean rainfall rate aggregated over a
period of time pag [mm year−1] is given by the product of the mean frequency
of the events λ [year−1], the mean duration of an event τ [hour] and the
mean rainfall intensity µpev [mm hour−1]. The aggregated infiltration rate
iag(x) [mm year−1], used in Equation 3.1, can now be written as function of
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3.2 Model description

aggregated rainfall pag:

iag(x) = λτE(iev(x, pev)) = pag
E(iev(x, pev))

µpev
= pag

(
1− e−

icap(x)

µpev

)
(3.7)

Similar to infiltration in the model by Rietkerk et al. (1997), the aggregated
infiltration rate iag(x) increases asymptotically to pag for P →∞.

In this subsection, we neglected the infiltration of runoff produced uphill
(runon). As mentioned, this assumption is valid under particular conditions.
For example, if plant density and infiltration capacity are spatially homogen-
eous, runoff is produced if icap(x) is exceeded (pev > icap(x)). However, if
pev > icap(x) and if icap(x) is equal for all x, runoff will not infiltrate downhill
as the maximum infiltration rate icap(x) is already reached for all x. In the
case that pev < icap(x), no runoff is generated at any x, and therefore runon
can be neglected as well. If plant density is not uniform and infiltration
capacity is spatially heterogeneous, still areas exist where runon does not
occur and infiltration is approximated by Equation 3.7, as will be discussed
in Section 3.2.5.

3.2.4 Infiltration including runon (non-uniform case)

In this subsection we will continue with the approach of Section 3.2.3, but
now we include the infiltration of runoff produced uphill (runon). Runoff
generation and its infiltration downhill are modeled similarly to Karssenberg
(2006), with the difference that we use a spatially continuous formulation,
which allows to calculate the expected infiltration rate as in the previous
subsection. Runoff is generated where rainfall intensity pev exceeds infiltra-
tion capacity icap(x) and is transported downhill. Again two cases can be
distinguished: (1) Infiltration rate iev(x) equals infiltration capacity icap(x)
in areas where runoff is generated (i.e. pev > icap(x)) and directly downhill
of these areas due to runon. (2) In areas that do no receive surface water
(e.g. due to depletion uphill) infiltration rate equals the rainfall intensity. A
critical rainfall intensity p̃ev(x) separates the two cases (see Figure 3.2):

iev(x, pev) =

{
pev if pev < p̃ev(x)

icap(x) pev ≥ p̃ev(x)
(3.8)

The critical rainfall intensity p̃ev(x) in mm hour−1 is the minimum rainfall
intensity required for surface water to reach position x on the hillslope and
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3 Rainfall intensity and semiarid ecosystems

can be derived as follows.
In order for surface water to reach site x, the cumulative rainfall intensity

uphill of x needs to exceed the cumulative infiltration capacity uphill of
x. The cumulative infiltration capacity îcap [m mm hour−1] upslope of x
increases with distance l [m] from x.

îcap(l, x) =

x∫
x−l

(icap(x
′))dx′ (3.9)

Since rainfall is assumed to be spatially uniform, the cumulative rainfall
intensity between x − l and x, (p̂ev in m mm hour−1) is independent of x
and is given by:

p̂ev(l, pev) = lpev (3.10)

If p̂ev(l, pev) exceeds îcap(l, x) for any positive value of l, surface water reaches
x. The critical rainfall intensity equals the minimum rainfall intensity for
which p̂ev(l, pev) = îcap(l, x) for some value of l (with l > 0). From Equations
3.9 and 3.10 follows that the critical rainfall intensity is given by:

p̃ev(x) = min
l>0

(
îcap(l, x)

l

)
(3.11)

Here min() takes the minimum value of a given function. Note that by allowing
l to have any positive value, we assume the hillslope to have an infinite length.

If l tends to zero, then
îcap(l,x)

l tends to icap(x). Therefore, if the minimum
in Equation 3.11 is located at l close to zero, then p̃ev(x) = icap(x). This is
the case for some areas on the hillslope depicted in Figure 3.2.

The expected infiltration rate E(iev) can again be obtained by summing the
infiltration rates (Equation 3.8) over all possible event intensities (pev > 0)
while multiplying with the probability of occurrence of the events (Equation
3.5). As shown in Appendix 3.A, this yields:

E(iev(x, pev)) = µpev + (icap(x)− p̃ev(x)− µpev)e
− p̃ev(x)

µpev (3.12)

The aggregated infiltration rate iag(x) [mm year−1] used in Equation 3.1 now
becomes:

iag(x) = pag + pag

(
icap(x)− p̃ev(x)

µpev
− 1

)
e
− p̃ev(x)

µpev (3.13)
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3.2 Model description

The full model is described by Equations 3.1, 3.2 and 3.13. In case of
uniform infiltration conditions p̃ev = icap, meaning that Equation 3.13 reduces
to Equation 3.7.

Infiltration and runoff/runon process are modelled in a simple parsimonious
way. Notice for example that hillslope gradient is not a parameter in Equation
3.13. This is because we assume instantaneous surface water redistribution:
all runoff generated uphill infiltrates downhill as long as infiltration capacity is
not met. Models that, besides spatial infiltration contrasts, also incorporate
contrasts in surface roughness and resistance to flow, suggest that such
sophisticated approaches are only required on terrains with a slope up to
around 0.1% (Thompson et al., 2011). This supports our simplified approach,
as the banded patterns we aim to model can only be found on hillslopes with
a gradient greater than 0.2% to 0.25% (Valentin et al., 1999; Deblauwe et al.,
2011). Finally, the spatial infiltration patterns depicted in Figure 3.2 are
comparable, though less smooth, to those found by more advanced models
(Thompson et al., 2011).

3.2.5 Competition for surface water and spatial feedbacks

The competition for surface water in this model is fundamentally different
from other conceptual models that describe pattern formation in semiarid
ecosystems (e.g. HilleRisLambers et al., 2001; Rietkerk et al., 2002; Gilad
et al., 2004; Meron et al., 2007). These models do not consider soils to have
a finite capacity to take up water. Instead, infiltration rate is considered
to be a function of surface water depth which is modelled as a separate
state variable. Since surface water accumulates on the bare interbands and
is depleted as it is transported through the vegetation bands, bare areas
positively affect infiltration in downhill vegetated areas while vegetated areas
have a negative effect on the infiltration rate in the bare interbands in these
models (see Appendix 3.B). The positive effect enables patterned states
to exist under harsher conditions than would be the case if vegetation was
uniformly distributed (Rietkerk et al., 2002; Sherratt and Lord, 2007), while
the negative effect is responsible for the formation of patterns (Gierer and
Meinhardt, 1972; Van de Koppel and Crain, 2006; Rietkerk and Van de
Koppel, 2008) and explains why bare areas emerge when uniform cover is
still possible (i.e. Turing instability).

In our model the positive effect is still active: runoff is generated on the
bare interbands if rainfall intensity exceeds the infiltration capacity of bare
soil (i.e. pev > i0) and feeds the vegetation bands where the infiltration
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Figure 3.2: Infiltration capacity icap, critical rainfall intensity p̃ev and infiltration rates iev for
rain events with intensities pev of (a) 20 mm hour−1 and (b) 30 mm hour−1 on a
hillslope with an imposed periodic pattern in plant density (P ranges from 0 to 40 g
m−2). The critical rainfall intensity p̃ev is the minimum rainfall intensity required for
a particular location on the hillslope to receive surface water. The arrows indicate how
the generated runoff is relocated. For some areas on the hillslope p̃ev(x) = icap(x).
Notice that the amount of runon is equal to the amount of runoff that is generated and
that surface water is transported further downhill during more intense rain events.
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capacity is higher. However, the negative effect of the vegetation bands on
the interbands is absent: the infiltration in the interbands is not affected by
uphill vegetation. This is because runoff is only generated if pev > i0, meaning
that bare areas receive surface water only if, due to local rainfall, infiltration
already occurs with a maximum rate of infiltration capacity. Consequently,
additional infiltration due to runon does not occur on bare soil, regardless of
rainfall intensity or the depth of the surface water layer. This means that for
these areas Equation 3.13 reduces to Equation 3.7, meaning that infiltration
in the interbands is independent of infiltration capacity uphill.

Because of the absence of a negative effect of areas with high plant densities
on areas with lower plant densities, the behaviour of our model can be
expected to differ from that of the mentioned conceptual models. This will
be discussed in Section 3.3.

3.2.6 Parametrization and analysis

We implemented the model in MATLAB (Mathworks, 2012). The partial
differential equations are solved numerically using a time-explicit scheme
with a constant time step ∆t. A vector of n elements, with each element
having a length of ∆x, represents the one dimensional hillslope.

The model can be analysed along only one spatial dimension, as we
assume all water to flow downhill and neglect the exchange of surface water
perpendicular to the hillslope. In models that do consider the exchange of
water in this direction found that vegetation bands may break up to form
dashed patterns (Von Hardenberg et al., 2001), which can also be found on
imagery (Valentin et al., 1999). These patterns are not considered in our
analysis.

In the model runs, Equation 3.11 was evaluated for 0 < l ≤ n∆x only.
Following Klausmeier (1999); Rietkerk et al. (2002); Lejeune et al. (2004);
Gilad et al. (2004); Sherratt and Lord (2007), we run the model using periodic
boundary conditions. Thereby we minimize the boundary effects, such as
deviating pattern orientation in proximity to ridges (McGrath et al., 2012)
and increasing pattern wavelength close to streams (Penny et al., 2013), which
makes our results independent of site-specific properties, such as topography.
The use of periodic boundary conditions implies that we only consider the
hillslope far from ridges and streams. Notice, however, that it does not imply
that surface water cannot escape from the modelled hillslope: it is either
depleted along the hillslope (as in Figure 3.2) or discarded once infiltration
capacity is met along the entire hillslope.
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3 Rainfall intensity and semiarid ecosystems

We performed runs of the model to study the patterned steady states. The
model runs were initiated with random peaks in plant density in a fraction
of the elements. To study the existence of stable patterned steady states
with a particular wavelength, the peaks in plant density were distributed in
a periodic fashion.

If environmental conditions, such as mean rainfall intensity, change, pat-
terned states may cease to exist. The parameter range for which patterns
with a particular wavelength exist was obtained using the bisection method
(or binary search method) (Burden and Faires, 1985).

We analytically derived the uniform steady states of the system (expressed
in plant density and water availability), as well as a rainfall range for which
(patterned) vegetation and a stable bare desert state co-exist (as discussed
in Appendices 3.C and 3.D). This information, combined with runs of the
model, allowed to examine the response of the system to changes in aggregated
rainfall rate pag and mean rainfall intensity µpev . Table 3.1 gives an overview
of the parameters used in the model.

3.3 Results

In this section we first describe the competition for water and feedbacks in
the model on a local scale (Section 3.3.1) in order to understand the global
behaviour of the model (Section 3.3.2). In Section 3.3.3, we will then discuss
how the model responds to changes in rainfall intensity.

3.3.1 Competition for water along the hillslope

With the parameter values of Table 3.1, the model generates spatially periodic
patterns in plant density along the hillslope (Figure 3.3a). These periodic
vegetation bands migrate in uphill direction: colonization occurs directly
uphill from the vegetation bands, while plant density slowly decays in the
downhill part of the bands. This is in line with observations (Worrall,
1959; Deblauwe et al., 2012) and modelling studies (Klausmeier, 1999),
although fixed patterns have also been reported (Thompson and Katul, 2009;
Dunkerley, 2013). Available soil water is generally higher in the vegetation
bands compared to the bare interbands, however a small depression in soil
water availability can be found in the downhill part of the vegetation bands
(Figure 3.3b).

Figure 3.3c shows the infiltration capacity icap(x) and critical rainfall
intensity p̃ev(x) in space. Expected infiltration rates (Equation 3.12) are high
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3 Rainfall intensity and semiarid ecosystems

if the critical rainfall intensity is low and infiltration capacity is high. The
infiltration capacity increases linearly with plant density, following Equation
3.4, and is therefore higher for more densely vegetated soils. In the vegetation
bands, critical rainfall intensity increases in downhill direction. This means
that a higher rainfall intensity is required for runon to occur in the downhill
part as compared to the upslope part. In the interbands the critical rainfall
intensity is equal to the infiltration capacity. Here runon does not occur and
the infiltration equation for the uniform case is valid (Equation 3.6).

When considering the effect of single rain events on the system, three
types of rain events can be distinguished. Low intensity events have an
intensity lower than the lowest infiltration capacity on the hillslope. These
events do not trigger runoff generation, meaning that all rainwater infiltrates
locally. Since the infiltration rate during such low intensity events is equal
for every location along the hillslope, these events have a homogenizing effect
on the spatial distribution of soil water and consequently vegetation. During
intermediate intensity events runoff is generated on the bare interbands and
is transported to the vegetation bands where it is fully depleted. Since
runon occurs in the uphill part of the vegetation bands and not in the
downhill part spatial competition occurs: uphill vegetation negatively affects
infiltration downhill. Such negative spatial interactions are a requirement
for regular pattern formation (Gierer and Meinhardt, 1972; Van de Koppel
and Crain, 2006; Rietkerk and Van de Koppel, 2008). During high intensity
events the rainfall intensity exceeds the maximum critical rainfall intensity
on the hillslope. Now surface water reaches all locations on the hillslope and
infiltration rate equals infiltration capacity for the entire hillslope. Plants may
still benefit from runoff produced uphill, however since surface water is not
fully depleted on its way through the vegetation bands spatial competition
does not occur. In addition, not all generated runoff is able to infiltrate
downhill, meaning that some water flows through the vegetation bands and
is eventually lost from the system.

The categorization of rain events as described above helps in understanding
the response of the system when subject to changes in mean rainfall intensity,
as discussed in Section 3.3.3.

3.3.2 Alternative stable system states

Apart from the patterned state discussed so far, uniformly vegetated states
and/or a bare desert state exist depending on parameter setting. Figure
3.4a shows a bifurcation diagram with aggregated rainfall pag as bifurcation
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Figure 3.3: (a) Plant density P [g m−2], (b) plant density P [g m−2] and available soil water
W [mm] and (c) infiltration capacity icap [mm hour−1] and critical rainfall intensity
p̃ev [mm hour−1] along the hillslope. Notice that the minimum infiltration capacity
on the hillslope - separating low intensity events from intermediate intensity events
- is equal to the infiltration capacity of bare soil i0. The maximum critical rainfall
intensity - separating intermediate intensity events from high intensity events - equals
the mean infiltration capacity of the hillslope. In (c) infiltration capacities above 100
mm hour−1 were cut off due to limited space. The peak infiltration capacity in the
vegetation bands is about 1000 mm hour−1
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3 Rainfall intensity and semiarid ecosystems

parameter and with a constant mean rainfall intensity µpev . For high rainfall
values only a uniformly vegetated state is stable and for very low rainfall
values only a stable bare desert state exists. For intermediate aggregated
rainfall values the system has alternative stable states: stable patterned
states or a stable uniformly vegetated state coexist with a stable bare state.

Notice that multiple stable patterned states with different pattern wavelengths
can exist for a given parameter configuration. For high wavelength patterns
the plant density in the vegetation bands is higher compared to low wavelength
patterns (see Figure 3.5). This is because high wavelengths come with a
greater interband area, which enables plants to harvest more surface water
(Yizhaq et al., 2005). We found that the plant density in the vegetation
bands needs to be higher than a certain threshold value in order for plants
to grow and ultimately sustain themselves. This minimum plant density
depends on aggregated rainfall rate pag as shown in Figure 3.4b (see Appendix
3.C for a derivation). Since plant density in the vegetation bands increases
with wavelength and because the minimum required plant density increases
with aridity (Figure 3.4b), high wavelength patterns can persist under more
arid conditions. As rainfall decreases, an adaptation of pattern wavelength
occurs once a patterned state with a certain wavelength can no longer be
sustained (Sherratt, 2013a). At low rainfall values (pag < 210 mm year−1 for
the current parameter setting) the minimum required plant density tends to
infinity. Here stable patterned system states can not exist. For our model we
were able to derive this lower rainfall limit at which patterned system states
cease to exist (see Appendix 3.D).

pag =
mµpeve

i0
µpev

ca
(3.14)

This is the rainfall value at which desertification occurs: the transition from
a vegetated (patterned) state to a bare desert state.

The upper rainfall limit for which patterns exist is equal to the rainfall
value at which uniformly vegetated states cease to exist (pag ≈ 700 mm
year−1 for the current parameter setting), meaning that stable patterned
states and stable uniformly vegetated states do not coexist in this model.
This can be explained by the absence of a negative effect of areas with high
plant biomass on areas with lower plant biomass, as discussed in Section 3.2.5.
Since no runon occurs in the interbands, Equation 3.13 reduces to Equation
3.7, meaning these areas behave as if they are uniform system states. If no
stable uniformly vegetated state exists (pag < 700 mm year−1), plant density
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decays to zero in the interbands directly downhill of the vegetation bands,
as in the case of the model run of Figure 3.3. If however a stable uniform
vegetated state does exist, plant density no longer decays in the interbands
while the uphill parts of the vegetation bands keep propagating in uphill
direction. This eventually results in a uniformly vegetated state.

A stable bare desert state exists for the entire parameter range in which
patterns can be found. The desert state remains stable up to a rainfall level
of pag ≈ 1070 mm year−1. This value, above which revegetation occurs
regardless of the amount of biomass introduced, can be obtained analytically
(see Appendix 3.D):

pag =
rW ∗

1− e−
i0

µpev

(3.15)

in which W ∗ is the resource level at which plant growth equals plant losses
(Tilman, 1982): W ∗ = mk

cu−m .
Equations 3.14 and 3.15 give the aggregated rainfall rates between which

the system can have alternative stable states and where respectively deserti-
fication and revegetation can be expected to occur. However, we found that
desertification may as well occur at a much higher rainfall level than given
by Equation 3.14. If the system is in a uniformly vegetated state and rainfall
declines over time, a transition to a desert state occurs where uniformly
vegetated states cease to exist. Such a transition is not preceded by the
formation of vegetation patterns. This system behaviour can be attributed
to the fact that in our model the patterned states are isolated from the
uniform steady states. In most models, patterns arise from a uniformly ve-
getated state that becomes unstable to heterogeneous perturbations (Turing
instability; Turing, 1953; Edelstein-Keshet, 1988). As a result, these models
predict a sequence of uniform vegetation, patterned vegetation and desert
with increasing aridity. In our model, in contrast, the uniformly vegetated
state remains stable and patterns only form if the desert state is perturbed
by sufficiently large perturbations. Notice that, although the bare desert
state is stable up to pag ≈ 1070 mm year−1, relatively small perturbations
are required for revegetation to occur as pag increases (Figure 3.4), meaning
that bare desert states are unlikely to be observe at such high rainfall values.

3.3.3 The response of the model to changes in rainfall intensity

So far we have seen that the ability of plants to harvest water depends on
rainfall intensity and that during intense rain events an amount of rain water
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Figure 3.4: (a) The steady states of the system expressed in mean plant density P [g m−2] plotted
against aggregated rainfall rate pag [mm year−1]. The solid and dashed lines depict the
uniformly vegetated equilibria and can be written in terms of pag as shown in Appendix
3.C. For this parameter setting a stable uniform bare state exists for pag < 1070 mm
year−1 (Equation 3.15). The markers show the mean plant density for patterned
states with different wavelengths obtained with runs of the model. The red markers
are obtained using the bisection method and depict the mean plant density at which
the stable patterned states cease to exist. (b) The red dashed line shows the minimum
plant density in a vegetation band required for plants to grow and ultimately sustain
themselves (see Appendix 3.C for a derivation). For pag < 210 mm year−1 (Equation
3.14) infinite plant density is required to accomplish this. The arrows in (a) and (b)
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Figure 3.5: Patterns in plant density P with different wavelengths Λ but with a fixed parameter
setting (Table 3.1). Notice that the plant density in the vegetation bands increases
with wavelength, enabling high wavelength patterns to persist in drier climates (Figure
3.4b).

is lost from the system in the form of runoff (Section 3.3.1). In addition,
we found that alternative stable states can co-exist, and that the rainfall
range for which this occurs depends on mean rainfall intensity (Section 3.3.2).
Using Equations 3.14 and 3.15 we can now study the response of the system
to changes in mean rainfall intensity µpev . Figure 3.6 shows that an increase
in mean rainfall intensity will widen the rainfall range for which the system
has alternative stable system states (this is the case only if m

c + rka
i0

> u
as derived in Appendix 3.D). At low mean rainfall intensities, the system
does not have alternative stable states and also patterns cannot exist. Short
wavelength patterns are most likely to be observed in regions with high mean
rainfall intensity. Plants can persist in very dry climates if the mean rainfall
intensity is close to the infiltration capacity of bare soil i0 (µpev = i0 is a
minimum of Equation 3.14, see Appendix 3.D) and patterning is most likely
to be observed where mean rainfall intensity is higher than the infiltration
capacity of bare soil µpev > i0, which is consistent with observations that
link vegetation patterns to low infiltrability of soils (Valentin et al., 1999).

The response of the system to changes in mean rainfall intensity is affected
by model parameters that control infiltration into bare soil i0 and the impact
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3 Rainfall intensity and semiarid ecosystems

of plants on soil structure a (Figure 3.7). The parameters i0 and a are
related to soil type and vegetation composition. The infiltration capacity of
sandy soils is generally higher than that of clayey soils, whereas vegetation
composed of perennial grasses has a greater impact on soil structure when
compared to annual grasses (Kelly and Walker, 1976; Rietkerk et al., 2000).
Increasing mean rainfall intensity causes a more pronounced increase of the
rainfall range with alternative stable states if the infiltration capacity of bare
soil i0 is low and if the impact of plants on soil structure a is high. Also notice
that plants can persist into higher aridity if bare soil infiltration capacity is
low and if the impact of plants on soil structure is high.

As indicated by the arrows in Figure 3.6, changes in mean rainfall intensity
can also induce a critical transition to a desert state or cause recovery from
a desert state, even if aggregated rainfall rates remain unchanged. If the
system is in a patterned state, an increase in mean rainfall intensity can
result in desertification (arrow 1 in Figure 3.6). Such a transition is the result
of an increased fraction of events that lead to runoff losses from the hillslope
(high intensity events, as defined in Section 3.3.1) and is only possible if the
mean rainfall intensity exceeds the infiltration capacity of bare soil i0. The
likelihood that desertification due to increasing mean rainfall intensity occurs
is related to the slope of the lower rainfall limit, as given by Equation 3.14,
and decreases with impact of plants on soil structure a (see Figure 3.7). As
discussed in the previous subsection, a transition to a bare desert state can
also occur if the system is in a uniformly vegetated state (arrow 2 in Figure
3.6).

Less intuitive is the fact that a transition to a desert state can result
from a decrease in mean rainfall intensity (arrow 3 in Figure 3.6). This is
caused by the fact that a decrease in mean rainfall intensity does not only
lead to decreased runoff losses, but also to a lower fraction of events that
are intense enough to trigger redistribution of water (intermediate and high
intensity events as defined in Section 3.3.1). Consequently, more rainwater
infiltrates locally and a greater fraction of the rainwater infiltrates in the bare
interbands. As plants are absent in the interbands, this water is eventually
lost due to soil evaporation and percolation. Desertification as a result of
decreasing rainfall intensity can only occur if the system is in a patterned
state (and if m

c + rka
i0(e−1) > u; see Appendix 3.D). If the system is in the

desert state, decreasing rainfall intensity can also result in revegetation (if
pag > rW ∗; arrow 4 in Figure 3.6).
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states exist. The markers show the lower rainfall limits of patterned states with the
indicated wavelengths and were obtained using the bisection method. The arrows
indicate how changes in aggregated rainfall rate (dashed) and mean rainfall intensity
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as derived in Appendix 3.D. The border between uniform vegetation and patterned
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3.4 Discussion and conclusions

In the coming decades global climate change may affect the functioning
of ecosystems in a gradual or sometimes drastic manner. Model studies
addressed that semiarid ecosystems can respond in a non-linear way to
changes in variables like grazing and mean annual rainfall (Noy-Meir, 1975;
Rietkerk et al., 1997). This means that gradual changes can lead to a rapid
and significant loss of biological productivity, which is also referred to as
desertification. While projections of global climate models are subject to
much uncertainty regarding changes in mean annual and seasonal rainfall
in arid and semiarid regions, strong trends in rainfall intensity have been
reported (Tebaldi et al., 2006; Solomon et al., 2007). By combining an
ecological model with a simple event based hydrological hillslope model, we
were able to study the response of patterned semiarid ecosystems to changes
in rainfall intensity.

From analysis of the model we conclude that projected increases in rainfall
intensity can induce and enhance alternative stability of semiarid ecosystems.
We found that periodically banded vegetation, resulting from surface water
redistribution, cannot exist in regions with low mean rainfall intensity and
that these ecosystems are less likely to be alternatively stable. Finally, we
found that under certain conditions both an increase and a decrease in mean
rainfall intensity can push the system over a critical threshold, resulting in a
regime shift to a bare desert state. This finding was attributed to the fact
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that water can be lost from the system in two ways. During high intensity
rain events a fraction of the water flows through the vegetation bands and
is lost as runoff, while during low intensity events a large portion of the
water infiltrates in the bare interbands, where it is not available to plants
and eventually lost due to soil evaporation and percolation.

The categorization of rain events into low, intermediate and high intensity
events - as done in this paper to explain the response of the system to changes
in mean rainfall intensity - is analogous to field observations by McDonald
et al. (2009). In their study on the ecohydrology of banded vegetation patterns
in the Chihuahuan Desert (USA), a threshold in storm size was identified
above which a part of the runoff from interbands flows through the vegetated
bands. In Section 3.3.1, we classified events with an intensity above this
threshold as high intensity events. After small rain events wetting depths do
not significantly differ between the vegetation bands and the interbands (low
intensity events in our classification) (McDonald et al., 2009), while during
larger storms infiltration in the vegetated bands was significantly higher
(intermediate and high intensity events in our classification) (McDonald et al.,
2009).

Our model differs from other conceptual models in that a (Turing unstable)
uniformly vegetated system state and patterned system states do not co-
exist in our model. This means that patterns cannot form out of uniform
vegetation and that if the system is subject to change, a regime shift from a
vegetated state to a desert state can occur without a warning in the form
of vegetation patterns. We attribute this difference in model behaviour to
model assumptions that lead to the absence of a negative effect of uphill
vegetation on infiltration in the interbands. While we considered infiltration
to be limited by the infiltration capacity of a soil, other conceptual models
(HilleRisLambers et al., 2001; Rietkerk et al., 2002; Gilad et al., 2004; Meron
et al., 2007) assume infiltration rates to be controlled by the depth of the
surface water layer. Both infiltration models can be justified depending
on the type system that is being considered, however, our study indicates
that during model development infiltration models should be selected with
care, as this choice can fundamentally affect the global behaviour of pattern
formation models.

The minimalistic modelling approach used in this study enabled us to
derive expressions for which the system exhibits alternative stable states and
allowed us to derive the conditions required for the occurrence of critical
transitions induced by changes in rainfall intensity. However, the choice
for an analytically tractable and simplified model may have affected the
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presented findings in a number of ways.
Firstly, although the model captures the processes of infiltration and surface

water redistribution in a hydrologically sensible way, it does not consider the
possible interactions between rain events induced by antecedent soil moisture.
If the interarrival time between rain events is short, i.e. in climates with
frequent rain events (on left side of Figure 3.6), soils may be moist at the
onset of a rain event leading to decreased infiltration capacities and possibly
to the generation of runoff. A study by Baudena et al. (2007), shows similar
mechanisms can lead to decreased productivity of drylands for interarrival
times smaller than 3 days. In climates with infrequent high intensity events
on the other hand, rainfall induced seal formation may significantly affect
soil drying and consequently infiltration (Assouline and Mualem, 1997, 2002,
2003).

A second shortcoming of the model is that it does not fully account for
the intermittent nature of rainfall, as it does not consider dry down periods
and associated vegetation dynamics between rain events. In climates with
sporadic high intensity rain events (on the right side of Figure 3.6) the length
of these dry periods may have a great impact on plant mortality, while
the effect of infiltration rates on plant growth is of less importance. Model
studies show that models that do not consider the intermittent properties of
rainfall systematically underestimate the productivity of semiarid ecosystems
(Baudena et al., 2007; Baudena and Provenzale, 2008; Kletter et al., 2009).
This underestimation is less pronounced if spatial feedbacks, such as resource
redistribution due to infiltration contrasts, govern the system as in our model
(Kletter et al., 2009; Baudena and Provenzale, 2008). Nonetheless, these
effects may still be important if soil water uptake is non-linear (Kletter et al.,
2009).

A third issue not accounted for in this study, is the fact that the magnitude
of variability imposed on the system changes with rainfall intensity. Variability
in infiltration rates (see Equation 3.18 in Appendix 3.A) and soil moisture (see
Rodriguez-Iturbe et al. (1999)) are especially high at intermediate intensities.
Variability in environmental conditions can affect model outcome in various
ways. It can cause convergence of the system to a stochastically stable state
between the two deterministically stable states (D’Odorico et al., 2005), it
can result in a shrinkage of the region of bistability (Guttal and Jayaprakash,
2007), or it may induce the formation of patterns where one would expect
uniform vegetation cover (D’Odorico et al., 2006).

Finally, microtopography can play an important role in infiltration and
runoff generation. The hydrological part of our model is valid for sheet flow
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conditions, i.e. the surface water layer is deep compared to the depth of
microtopographic depressions. This assumption is justified for sufficiently
intense events, but for less intense events surface storage in depressions
delays runoff initiation and increases infiltration locally (Thompson et al.,
2010b). High intensity events on the other hand, may a trigger changes in
geomorphology. This may cause changes in flow patterns and infiltration, and
may eventually affect vegetation patterning (Saco et al., 2007). We believe
that studying such processes could be done by extending the framework
presented here.

Future studies could attempt to verify our findings using areal images.
For example, our model suggests that regular patterning only occurs in
climatic regions with high mean rainfall intensities. If mean rainfall intensity
is indeed a key parameter in explaining regular patterning, it can be used to
further improve empirical predictive models such as the one by Deblauwe
et al. (2008). Our study also suggests that changes in rainfall intensity may
lead to increased resource losses, due to bare soil infiltration and runoff, and
that these losses can potentially trigger desertification. Field data could be
used to assess the rainfall intensities that separate the different event types
as identified in our model study. These values, combined with the frequency
distribution of rainfall intensity, can be used to estimate the fractional loss
of water from the system in current and future climates, and may thereby
help in assessing the proximity of semiarid ecosystems to critical thresholds.
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Appendix 3.A Derivation of first and second order
moments of infiltration rate

Equation 3.6 is the expected infiltration rate when neglecting runon and is
based on Equation 3.5 and Equation 3.3. The expected infiltration rate can
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be derived as follows.

E(iev) =

∞∫
0

ievf(pev)dpev

=

icap∫
0

pevf(pev)dpev +

∞∫
icap

icapf(pev)dpev

=

icap∫
0

pev
µpev

e
− pev
µpev dpev +

∞∫
icap

icap
µpev

e
− pev
µpev dpev

=
[
−(µpev + pev)e

− pev
µpev

]icap
0

+
[
−icape

− pev
µpev

]∞
icap

= µpev − (µpev + icap)e
− icap
µpev + icape

− icap
µpev

= µpev

(
1− e−

icap
µpev

)

(3.16)

The expected infiltration rate including runon (Equation 3.12) is based on
Equation 3.5 and 3.8:

E(iev) =

∞∫
0

ievf(pev)dpev

=

p̃ev∫
0

pevf(pev)dpev +

∞∫
p̃ev

icapf(pev)dpev

=

p̃ev∫
0

pev
µpev

e
− pev
µpev dpev +

∞∫
p̃ev

icap
µpev

e
− pev
µpev dpev

=
[
−(µpev + pev)e

− pev
µpev

]p̃ev
0

+
[
−icape

− pev
µpev

]∞
p̃ev

= µpev − (µpev + p̃ev)e
− p̃ev
µpev + icape

− p̃ev
µpev

= µpev + (icap − p̃ev − µpev)e
− p̃ev
µpev

(3.17)
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The variance in infiltration rate is related to the mean rainfall intensity µpev
as shown in Equation 3.18.

VAR(iev) =

∞∫
0

(iev − E(iev))
2f(pev)dpev

=

icap∫
0

(pev − E(iev))
2f(pev)dpev +

∞∫
icap

(icap − E(iev))
2f(pev)dpev

=

icap∫
0

(pev − E(iev))
2

µpev
e
− pev
µpev dpev +

∞∫
icap

(icap − E(iev))
2

µpev
e
− pev
µpev dpev

=
[
−(µ2

pev + (E(iev)− µpev − pev)2)e
− pev
µpev

]icap
0

+
[
−(icap − E(iev))

2e
− pev
µpev

]∞
icap

= µ2
pev + (E(iev)− µpev)2 + 2µpev(E(iev)− µpev − icap)e

− icap
µpev

= µpev

(
µpev − 2icape

− icap
µpev − µpeve

−2
icap
µpev

)
(3.18)

For 0 < µpev << icap the variance increases quadratically with µpev . The
variance in infiltration rate reaches a maximum at µpev ≈ 0.89icap, after
which it slowly declines with increasing rainfall intensity. A similar response
can be found in soil moisture variance (Rodriguez-Iturbe et al., 1999) which
is not only determined by the mean rainfall depth (the product of rainfall
intensity and duration) but also by the interarrival time or frequency of the
rain events and soil water losses.

Appendix 3.B Feedbacks between vegetation bands
and interbands if infiltration is depth
dependent.

In the model presented in this paper infiltration rate is independent of surface
water depth. In most models that generate patterns and that account for a
surface water related pattern forming mechanism, infiltration rate is (linearly)
related to surface water depth. An equation commonly used in conceptual
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models is given by Equation 3.19 (HilleRisLambers et al., 2001; Rietkerk
et al., 2002; Gilad et al., 2004; Meron et al., 2007).

I(O,P ) = αO
P + kW0

P + k
(3.19)

Here I is the infiltration rate, α is the maximum infiltration rate, O is the
surface water depth, P is the plant density, k is a half saturation constant
and W0 is the fraction of water that infiltrates in absence of plants.

Modeling infiltration with surface water depth dependence, as in Equation
3.19, results in a negative effect of the vegetation bands on the bare interbands
because surface water is depleted in the vegetation bands and consequently
surface water depth is lower downhill of vegetation bands (see Figure 3.8a,b).
As a result infiltration rate in the interbands is lower than in absence of
vegetation bands as shown in Figure 3.8c,d.
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Figure 3.8: (a,b) Surface water O [mm], soil water W [mm] and plant density P [g m−2] along
a hillslope generated using a one dimensional version of the model by Rietkerk et al.
(2002) with mortality rate d = 0.25 day−1, downhill flow rate v = 10 m day−1 and
surface water diffusion DO = 0 m2 day−1. In (a) rainfall rate R = 1.2 mm day−1 and
in (b) R = 0.8 mm day−1. Surface water flows from left to right. (c,d) Infiltration
rate I [mm day−1] for the patterned states of (a,b) (solid line) and for uniform states
(dashed line).
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3.C Bifurcation diagram

Appendix 3.C Bifurcation diagram

The equilibria shown in Figure 3.4 can be derived by setting Equation 3.1
and 3.2 to zero and neglecting diffusion terms dW

∂2W
∂x2 = dP

∂2P
∂x2 = 0.

∂W

∂t
= iag − u

W

W + k
P − rW = 0 (3.20)

∂P

∂t
= cu

W

W + k
P −mP = 0 (3.21)

Solving gives:

∂W

∂t
= 0 at:

W =
iag − uP − rk ±

√
(uP + rk − iag)2 + 4rkiag

2r
(3.22)

∂P

∂t
= 0 at:

P = 0 and W ∗ =
mk

cu−m
(3.23)

By plotting solutions 3.22 and 3.23 with p̃ev = icap we obtain the phase
planes for the homogeneous system shown in Figure 3.9. The stability and
the number of system states changes with aggregated rainfall rate pag. The
behavior of the system is very similar to the original model by Rietkerk
et al. (1997). The isocline of soil water availability losses its humped shape
if rainfall intensity is low, meaning that the transition from and to a bare
desert state becomes supercritical (see Figure 3.6).

The uniform steady states depicted in Figure 3.4a were obtained by writing
aggregated rainfall as a function of plant density:

pag =
m
c P + rW ∗

1− e−
i0+aP
µpev

(3.24)

The minimum plant density needed for plants to grow or sustain in Figure
3.4b is basically an unstable equilibrium above which the plant density in
a vegetation band on an infinitely long bare hillslope increases. The soil
uphill of the vegetation band is bare, therefore runon will occur if pev > i0,
meaning that the critical rainfall intensity p̃ev can be assumed to equal the
infiltration capacity of bare soil i0. Since the hillslope is assumed to be
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Figure 3.9: Phase planes for uniform conditions (dW
∂2W
∂x2

= dP
∂2P
∂x2

= 0 and p̃ev = icap) with

decreasing aggregated rainfall rates. In blue the isocline of available soil water ( dW
dt

= 0,

Equation 3.22). In green the isoclines of plant density ( dP
dt

= 0, Equation 3.23). The

system is in equilibrium if dW
dt

= dP
dt

= 0, i.e. where the isoclines intersect. Open
circles indicate unstable equilibria and closed circles indicate stable equilibria. The
vectors show the direction of change if the system is out of equilibrium.

infinitely long, runon occurs along the full width of the vegetation band.
We again need to neglect losses of soil water and plant density due to
diffusion dW

∂2W
∂x2 = dP

∂2P
∂x2 = 0, meaning that the vegetation band needs

to be sufficiently wide so that in its center diffusion losses approach zero.
The phase planes depicted in Figure 3.10 can again be obtained by plotting
solutions 3.22 and 3.23, but now with p̃ev = i0.

The curve of minimum plant density required for recovery as depicted in
Figure 3.4 was obtained by writing aggregated rainfall as a function of plant
density:

pag =
m
c P + rW ∗

1 + ( aP
µpev
− 1)e

− i0
µpev

(3.25)

Appendix 3.D Region with alternative stable system
states

3.D.1 Upper rainfall limit

Equation 3.26 (Equation 3.15 in main text) gives the highest value of pag for
which the system has multiple stable system states (solid line in Figure 3.6b).
Here the bare desert state changes stability: the isoclines for available soil
water and plant density intersect at P = 0. Equation 3.26 can be obtained
by filling in P = 0 in Equation 3.24.
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Figure 3.10: See caption of Figure 3.9 but now p̃ev = i0 and P reflects the plant density in a
vegetation band. Notice that plant density either decreases to zero or increases to

infinity. The latter is due to the fact that we neglect the diffusion losses (dW
∂2W
∂x2

=

dP
∂2P
∂x2

= 0) that, in the full model, would slow down plant growth as plant density
increases.

pag =
rW ∗

1− e−
i0

µpev

(3.26)

The derivative of Equation 3.26 with respect to mean rainfall intensity µpev
is given by:

dpag
dµpev

=
i0rW

∗e
i0

µpev

µ2
pev(e

i0
µpev − 1)2

(3.27)

Given that cu > m (W ∗ > 0) and that all parameter values are positive,
dpag
dµpev

> 0. This means that the aggregated rainfall required for recovery from
the desert state increases with rainfall intensity.

As the mean rainfall intensity µpev increases, Equation 3.26 approaches a
asymptote with a constant slope:

dpag
dµpev

∣∣∣∣
µpev→∞

=
rW ∗

i0
(3.28)

3.D.2 Lower rainfall limit

Assuming that alternative stable (patterned) states exists as long as the plant
density is required to recover from the bare state is finite, the lower limit of
the region with alternative stable system states is given by Equation 3.29
(Equation 3.14 in main text). This is the aggregated rainfall rate pag that is
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approached as P →∞ in Equation 3.25.

pag =
mµpeve

i0
µpev

ca
(3.29)

The derivative of Equation 3.29 with respect to mean rainfall intensity µpev
is given by:

dpag
dµpev

=
m(µpev − i0)e

i0
µpev

caµpev
(3.30)

Equation 3.30 is positive if µpev > i0 and negative if µpev < i0. A minimum
of Equation 3.29 can be found at µpev = i0. As the rainfall intensity µpev
increases, Equation 3.29 approaches an asymptote with slope:

dpag
dµpev

∣∣∣∣
µpev→∞

=
m

ca
(3.31)

3.D.3 Robustness of the presented model results

In the main text (subsection 3.3.3) we state that if the aggregated rainfall rate
remains unchanged, then both an increase and a decrease in mean rainfall
intensity can result in desertification. In addition, we claim that the bistable
region, in terms of aggregated rainfall, increases with mean rainfall intensity.
These findings hold for the parameter combination listed in Table 3.1 as
shown in Figure 3.6. Here we study the robustness of these findings: what
are parameter combinations are required for these findings to be valid?

Assuming that the transition from a patterned state to a desert state
occurs at an aggregated rainfall rate given by Equation 3.29, both an increase
and a decrease in mean rainfall intensity can result in desertification, only if
the second derivative of Equation 3.29 with respect to µpev in µpev = i0 is
positive:

d2pag
dµ2

pev

∣∣∣∣
µpev=i0

=
me

i0ac
> 0 (3.32)

This is always true since all parameter values are positive. Desertification
induced by declining mean rainfall intensity can only occur if the desert state
is stable at this minimum. Filling in µpev = i0 in Equation 3.26 and 3.29
results in the following condition:
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rW ∗

1− e−1
>
mi0e

ca
(3.33)

Rewriting gives:

m

c
+

rka

i0(e− 1)
> u (3.34)

The region of bistability, in terms of aggregated rainfall, increases with
mean rainfall intensity. This is always true for µpev ≤ i0, since here the slope
of the lower rainfall limit (Equation 3.30) is negative while the slope of the
upper rainfall limit is positive (Equation 3.27). From Equation 3.28 and 3.31
follows that for high values of mean rainfall intensity, the bistable region
increases with mean rainfall intensity if:

rW ∗

i0
>
m

ca
(3.35)

Rewriting gives:

m

c
+
rka

i0
> u (3.36)
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4 Soil water repellency: a potential
driver of vegetation dynamics in
coastal dunes.

Siteur, K., Mao, J., Nierop, K. G. J., Rietkerk, M., Dekker, S. C. and Ep-
pinga, M. B. (2016). Soil water repellency: a potential driver of vegetation
dynamics in coastal dunes. Accepted for publication in Ecosystems.

Abstract

Coastal dunes are valuable and complex ecosystems, meaning that predicting their response

to anthropogenic pressure is challenging. A potential driver of complexity that links soil,

water and vegetation dynamics is soil water repellency (SWR). SWR is mainly caused

by plant-derived hydrophobic compounds that are released during litter decomposition,

and leads to dry sandy soils resisting infiltration of precipitation. Until now, studies have

focused on soil physical and chemical properties associated with SWR, but the potential

of SWR generating soil-water-vegetation feedbacks that drive ecosystem dynamics is yet

to be assessed. This study assessed the role of SWR on coastal dune ecosystem dynamics

by combining field observations and laboratory experiments with theoretical ecological

modelling that incorporated the empirically established relationships. We observed large

differences in soil infiltration capacity in the field, and the laboratory experiments showed

that soil hydrophobic compound concentrations and antecedent soil moisture conditions

can explain these differences. Theoretical model analyses suggested that SWR can trigger

cyclic vegetation dynamics, including long periods in which vegetation is absent. Water

competitive plants with low hydrophobic compound content (e.g. woody species) exhibit

stable temporal dynamics, whereas species with opposite traits (e.g. grasses) are more

likely to induce cyclic dynamics. For the latter species, SWR can amplify drought stress.

In northwest Europe this effect could become more important in coming decades due to

the projected increases in drought severity. Our study explains how SWR may contribute

to coastal dune ecosystem complexity, providing insights that may aid effective dune

conservation and restoration.
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4 Soil water repellency and vegetation dynamics in coastal dunes

4.1 Introduction

Coastal dune ecosystems provide a broad range of natural and socio-economic
functions (Everard et al., 2010), motivating conservation and restoration
efforts in northwest Europe (Jensen, 1994; Grootjans et al., 2001; Van Der
Meulen et al., 2004). Managing coastal dunes is complicated, as the stability
and dynamics of these systems are controlled by an interplay between wind
erosion, sand supply and vegetation dynamics (Aagaard et al., 2007; Klijn,
1990; Arens et al., 2007). In turn, these factors are affected by on-going
changes in climate and human activities. Due to the inherent complexity
of coastal dunes it is difficult to assess the impact of such changes on dune
dynamics (Provoost et al., 2009). Vegetation significantly contributes to the
complexity of coastal dunes. Vegetation displays long term dynamics with
the abundance of dominant plant species varying over centuries (Zagwijn,
1970) but also short term dynamics driven by seasonality (Xu et al., 2013).
Seasonal changes in temperature and precipitation, for example, control
the productivity of plants. In addition, vegetation in coastal dunes shows
strong spatial heterogeneity and generally has a very diverse composition.
Finally, complex developments of vegetation, such as retrogression, have been
reported (Van Dorp et al., 1985; Van der Maarel et al., 1985).

To understand the factors that control the complexity of the coastal dune
ecosystem, interactions between vegetation and the abiotic environment need
to be considered (Le Bagousse-Pinguet et al., 2013; Adema and Grootjans,
2003). In this context, the relationship between vegetation and available soil
water deserves particular interest (Voortman et al., 2015), as climate change
is projected to include increasing severity of summer droughts in northwest
Europe (KNMI, 2014). This change may have undesired consequences for
vegetation composition and cover, as well as groundwater recharge and
wind erosion (Witte et al., 2008). When considering potential responses
to changing precipitation patterns, soil hydrophobicity, a widely observed
property of dry sandy dune soils, may be important to consider (Dekker
and Jungerius, 1990; Ritsema et al., 1993). This property is commonly
referred to as soil water repellency (SWR). SWR is caused by hydrophobic
compounds in the soil that mainly originate from plants (Bisdom et al., 1993;
DeBano, 2000; Horne and McIntosh, 2000; De Blas et al., 2013) and to a
lesser extent from microorganisms (Home, 2015; McGhie and Posner, 1980).
These soil hydrophobic compounds differ in concentration and composition
depending on their origin and they also vary in their impact on SWR (Mao
et al., 2014, 2015). SWR is a potentially important driver of dune vegetation
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dynamics as it may hamper infiltration of water into the rootzone, thereby
negatively affecting plant productivity. However, previous studies on SWR
have mostly focused on soil characteristics (Dekker and Ritsema, 1996; Doerr
et al., 2000; Doerr and Thomas, 2000) or on the identification of compounds
at the molecular level (Franco et al., 1995, 2000; De Blas et al., 2013; Mao
et al., 2014, 2015). Hence, how SWR mediates the relationship between
vegetation and soil water availability, and what the consequences of this
altered relationship are for ecosystem functioning remains to be investigated.

To assess the role of SWR in coastal dune ecosystem functioning, the rel-
ative importance of feedbacks associated with SWR needs to be understood.
Three feedbacks may potentially be important regarding the role of SWR
on ecosystem level. The first feedback is a negative feedback between plants
and available water, which results from the positive effect of available water
on plant growth and the negative effect of plant biomass on water through
water uptake. A second negative feedback is caused by accumulation of
hydrophobic compounds in the soil through the decomposition of plant litter,
which hampers infiltration and subsequent plant growth, resulting in less
plant biomass and decreased litter production. Finally, a positive feedback
could be caused by the fact that SWR only occurs on dry soils (Dekker
and Ritsema, 1994, 1996; Doerr and Thomas, 2000). For a given amount
of precipitation, SWR may cause dry soils to remain dry, while the same
amount of precipitation may lead to additional wetting of (already) wet soils.
The relative contribution of these feedbacks on ecosystem dynamics may
depend strongly on plant species traits, such as water competitiveness, which
controls the feedback between plants and available water, and hydrophobic
compound content of plant tissue, which affects the accumulation of hydro-
phobic compounds in the soil and consequently its repellency. However, a
systematic analysis of these three feedbacks within a modelling framework
is required to understand how they interactively affect the coastal dune
ecosystem dynamics.

This study aims to incorporate the described feedbacks into an ecological
model in order to understand the role of SWR on coastal dune ecosystem
functioning and to assess possible implications of projected climatic change for
the complex vegetation dynamics of the coastal dune ecosystems. We did this
by performing measurements and experiments using soil samples collected at
a field site in the national park Zuid-Kennermerland (the Netherlands) to get
insights regarding the effect of soil physical and soil chemical properties on
SWR. The obtained relationships where then incorporated into an ecological
model with which we aim to answer the following research questions: i)
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what is the potential role of SWR on vegetation dynamics in the coastal
dune ecosystem? ii) how do plant species traits affect the role of SWR
on vegetation dynamics? iii) how does SWR affect vegetation response to
droughts with increasing severity?

4.2 Empirical observations of SWR

4.2.1 Site description

The relationships used as input for the ecological model were obtained through
experiments at a field site in a national park in northwest Europe (Zuid-
Kennemerland, the Netherlands, 52◦25’17”N, 4◦35’13”E) and laboratory
measurements and experiments using soil samples collected at the same
site. Zuid-Kennemerland is a coastal sand dune system typical for the
west of the Netherlands. A part of the study area is bare soil, however
most of it is covered by algae and various groups of plant species, including
mosses, grasses, sedges, herbs, shrubs and trees. In the area, annual rainfall
amounts to 835 mm year−1. The annual potential evapotranspiration is
lower with 635 mm year−1 but shows strong seasonal variability (KNMI,
2015). As a result, monthly averaged potential evapotranspiration frequently
exceeds precipitation during the months March to September, resulting in a
precipitation deficit (see Figure 4.1). During this period, as water becomes
scarce, plants start competing for water and can experience drought stress.

4.2.2 Linking SWR to infiltration

In order to assess the role of SWR on ecosystem dynamics, we first examined
how SWR is linked to infiltration. SWR is commonly measured using the
Water Drop Penetration Time (WDPT ) test (Van ’t Woudt, 1959; Wessel,
1988; Dekker and Ritsema, 1994), which measures the time it takes for
one water droplet to penetrate a soil. The level of SWR can then be
classified in five groups (Bisdom et al., 1993): wettable (0-5 s), slightly
repellent (5-60 s), strongly repellent (60-600 s), severely repellent (600-3600
s) and extremely repellent (>3600 s). To link the WDPT to infiltration,
we performed infiltration experiments in the dry season (July, 2015) on a
bare and vegetated soil. Using the WDPT we classified the soils (in the top
5 cm) as being wettable and strongly/severely repellent respectively. We
then simulated a typical 5 mm rain event, which was applied instantaneously
while runoff of water was prevented using a ring with a diameter of 22 cm.
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Figure 4.1: Monthly averages of daily precipitation surplus in mm day−1 for the nearby weather
station at Wijk aan Zee, The Netherlands (period: 01-05-2001 - 30-04-2015; location:
52◦ 30’ N 04◦ 36’E). The precipitation surplus was calculated by subtracting the
(Makkink) potential evapotranspiration from the precipitation. The box and whisker
plots show the median (central red lines) and the upper and lower quartiles (box limits)
for each month. The whiskers indicate the variability outside the upper and lower
quartiles and can extend to a maximum of 1.5 times the interquartile range. Values
beyond the whiskers are regarded as outliers and indicated with the + markers.

Figure 4.2 shows that the resulting infiltration fronts differ strongly between
the two soils. While the water infiltrates deep into the wettable soil (Figure
4.2a), it only wets the upper 1 cm of the repellent soil (Figure 4.2b). Water
in this top layer can easily evaporate and therefore remains unavailable for
plants whose root zones extend to much deeper layers. In addition, if not
blocked by the ring, the water may be lost through runoff and infiltrate
elsewhere. The common measure for SWR, can therefore be considered as a
good proxy for infiltration of water into the root zone.

4.2.3 Soil variables controlling infiltration

We studied the effects two variables on infiltration: i) hydrophobic com-
pound concentration in the soil and ii) initial soil moisture content. Links
between these two variables and infiltration would give rise to feedbacks
that potentially govern vegetation dynamics, as already briefly described in
the introduction. To study the effects of these variables on infiltration we
collected 15 soil samples from the Zuid-Kennermerland under a variety of
plant species (grasses, mosses, shrubs, pines and oaks) at different soil depths
ranging from 0 to 30 cm (see Mao et al., 2014, for more sampling details).

To determine the hydrophobic compound concentration, all soil samples
were oven-dried at 30◦C for two days and sieved (mesh size 1.4 mm) to remove
leaf and root fragments. A sequential extraction procedure was applied to
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Figure 4.2: Infiltration fronts in a wettable soil (a) and a strongly/severely repellent soil (b) one
hour after a 5 mm rain event. The upper images show the undisturbed soil from above.
The WDPT in soil (a) was 0 seconds along the whole soil profile. The WDPT of soil
(b) is depicted in the bar graph, with classes (i) wettable, (ii) slightly repellent, (iii)
strongly repellent and (iv) severely water repellent. The WDPT for this soil equals
zero for depths >10 cm.
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the soil samples using dichloromethane/methanol (DCM/MeOH) and iso-
propanol/ammonia solution (IPA/NH3) successively (Mao et al., 2014). All
extracts were analyzed by gas chromatography - mass spectrometry (GC-MS)
to identify and quantify the compounds. The total hydrophobic compound
concentration (THCC) in Figure 4.3 represents the summed concentration of
the dominant compound groups extracted from soils as described by Mao et al.
(2015). For more details about the method and the identified compounds
see Appendix 4.A. Figure 4.3a shows that the total hydrophobic compound
concentration correlates with the WDPT , meaning that as hydrophobic
compound concentration in the soil increases less water infiltrates. This
finding suggests a negative feedback between plant biomass and available
soil water: the accumulation of soil hydrophobic compounds through the
decomposition of plant litter hampers infiltration and thereby negatively
affects water availability and subsequent plant growth.

To determine soil moisture content we selected a subset of samples. From
each soil sample, 40 gram of oven-dried soil was put in a plastic Petri dish
(� 90 mm, 1.5 mm height). Demineralized water was added until the soil
became saturated. The dishes were put in a fume hood to let water evaporate.
As the water evaporated over time, the dishes were weighed to calculate the
gravimetric soil moisture content and the WDPT was measured by applying
10 water droplets to each soil (see Appendix 4.B for the equation used to
calculate the gravimetric soil moisture content). Figure 4.3b shows that, in
line with previous studies (Dekker and Ritsema, 1994; Doerr and Thomas,
2000; Dekker and Ritsema, 1996), a SWR threshold in soil moisture can be
identified below which infiltration is hampered. Above this threshold, soils
are wettable and infiltration is possible. The finding suggests the potential of
a positive feedback between soil water availability and infiltration: a decrease
in soil water reduces infiltration, leading to a further decrease in soil water.

4.3 Model description and analyses

4.3.1 Model description

A theoretical model was developed which captures our three empirical ob-
servations: (1) SWR hampers infiltration into the root zone (Figure 4.2b),
(2) SWR increases with hydrophobic compound concentration (Figure 4.3a)
and (3) SWR occurs only in dry soils (Figure 4.3b). The model is based on
the water limitation model by Rietkerk et al. (1997), which was extended to
include these observations. The model captures the dynamics in available soil
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Figure 4.3: (a) Infiltration, measured as the inverse of the water droplet penetration time
(WDPT−1), decreases with the total hydrophobic compound concentration (THCC).
A linear fit through this log-log plot gives the following equation: WDPT =
10bTHCCa with a = 2.1979, b = −1.2115, R2=0.61 and p = 0.0006. The dots and the
wiskers in this plot represent the average ± the standard deviation of the penetration
times of 20 individual water droplets on oven-dried soil samples. (b) SWR only occurs
if the gravimetric soil moisture content drops below a threshold value of around 6%.
Here the dots and the wiskers are based on the measured penetration times of 10 indi-
vidual water droplets. The red dotted lines are the average WDPT below and above
the threshold. More details about the methods can be found in Appendix 4.B.

water W [mm], plant biomass B [g m−2] and hydrophobic compound density
C [g m−2]. All state variables are assumed to be uniformly distributed in
space.

The dynamics in available water W are modeled with Equation 4.1:

dW

dt
= pI(W,C)− U(W )B − rW (4.1)

The first term represents the infiltration of water into the root zone. Here p
is the precipitation rate [mm day−1] and I is the fraction of the precipitation
that infiltrates into the root zone [-]. This fraction depends on the amount
of water in the root zone W and the amount of hydrophobic compounds C:

I(W,C) =
Wα +W0(C)kα1

Wα + kα1
(4.2)

In Equation 4.2, k1 is the SWR threshold [mm] that we identified in Figure
4.3b. It is the value of W below which infiltration into the root zone is
hampered. Above this value I asymptotically approaches 1 as W increases,
meaning that all water infiltrates into the root zone. Below k1, as W decreases,
I approaches to a value of W0, which is the fraction of precipitation that
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infiltrates into dry soil. The steepness of the SWR threshold is controlled by
the dimensionless exponent α [-] (α� 1). To capture the increase in SWR
with hydrophobic compound concentration (Figure 4.3a) we let the fraction
of precipitation that infiltrates into dry soils W0 decline with hydrophobic
compound density in the soil C as given by Equation 4.3:

W0(C) =
k2

C + k2
(4.3)

Here k2 is a half saturation constant [g m−2], it is the hydrophobic compound
abundance at which the fraction of precipitation that infiltrates into dry
soils equals 1

2 . The remaining terms of Equation 4.1 represent soil water
uptake by plants (second term) and losses (third term) and are modeled as
by Rietkerk et al. (1997). The uptake by plants is linearly related to plant
biomass density B and asymptotically approaches a maximum uptake rate
of u [dm3 g−1 day−1] as the available water increases:

U(W ) = u
W

W + k3
(4.4)

Here k3 is the value of W at which the uptake is half the maximum uptake
rate [mm]. Water losses, e.g. through percolation out of the root zone, are
linearly related to the available water W and occur at a rate of r [day−1].

The dynamics in plant biomass B are modeled as by Rietkerk et al. (1997):

dB

dt
= cU(W )B −mB (4.5)

The first term represents plant growth, which increases linearly with water
uptake (Equation 4.4). Parameter c is the conversion coefficient of water
uptake by plants to plant growth [g dm−3]. The second term covers mortality
losses, which increases linearly with plant biomass density B. Parameter m
is the specific biomass loss rate [day−1].

The model by Rietkerk et al. (1997) was further extended with Equation
4.6, which captures the accumulation and decomposition of hydrophobic
compounds in the soil:

dC

dt
= fmB − dC (4.6)

The accumulation of hydrophobic compounds occurs at the rate at which litter
is produced mB [g m−2 day−1] multiplied with the fraction of hydrophobic
compounds in plant tissue f [g g−1]. The decomposition of hydrophobic
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Figure 4.4: Interactions between the model components and the resulting feedbacks. Interactions
are represented by the arrows and feedbacks are indicated with the latin numbers
and are described in the main text. The + and - signs indicate positive and negative
interactions/feedbacks respectively. The asterisks ∗ and ∗∗ refer to interactions derived
from the empirical observations in Zuid-Kennermerland presented in Figures 4.3a and
4.3b respectively.

compounds takes place at a constant rate of d [day−1]. All parameters in the
model are listed and briefly described in Table 4.1.

Figure 4.4 shows the feedbacks in the described model. In the model, water
promotes plant growth while plants deplete water, resulting in a negative
feedback between plants and water (I−). Plants also produce hydrophobic
compounds that potentially hamper infiltration, leading to less available
water and decreased plant growth, which yields a second negative feedback
loop (II−). However, because wet soils allow infiltration the negative effect of
hydrophobic compounds is diminished by water in the soil, thereby yielding
a positive feedback (III+).

The three feedbacks depicted in Figure 4.4 do not occur at the same
timescales. The effects of hydrophobic compounds and water on infiltration
are instantaneous, meaning that the positive feedback (III+) is fast. Plant
dynamics, on the other hand, take place at longer time scales than infiltration,
resulting in a slower plant-water feedback (I−). The negative plant-compound-
water feedback (II−) can be considered to be even slower because hydrophobic
compounds accumulate and decompose at a very low rate, due to the small
fraction of hydrophobic compounds in plant tissue and the low decomposition
rate of hydrophobic compounds (see Appendices 4.D and 4.E for observed
fractions and rates respectively).
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Table 4.1: Description and units of the model parameters and state variables.

Symbol Description Unit

W Available soil moisture mm
B Plant biomass density g m−2

C Hydrophobic compound density g m−2

α Exponent causing a threshold the infiltra-
tion function

-

c The conversion of water uptake by plants
to plant growth

g dm−3

d Decomposition rate of hydrophobic com-
pounds

day−1

f Fraction of hydrophobic compounds in
plant tissue

g g−1

k1 SWR threshold in the infiltration function mm
k2 Half saturation constant of infiltration into

dry soil
g m−2

k3 Half saturation constant of soil water up-
take

mm

m Specific loss of biomass due to mortality
and grazing

day−1

p Precipitation rate mm day−1

r Specific soil water loss day−1

u Maximum specific water uptake dm3 g−1 day−1

4.3.2 Model analysis

In order to understand the potential role of SWR in dune vegetation dy-
namics the model was analyzed qualitatively, complemented with numerical
simulations. The parameter values where adopted from Rietkerk et al. (1997)
and parameters f , d, k1 and k2 have order-of-magnitude values that are
based on our observations and related observations published elsewhere (Mao
et al., 2015, see Appendices 4.D and 4.E). For more details on the parameter
values and a list of the values per figure see Appendix 4.C.

During analysis it was assumed that the dynamics of the three state
variables occur at different rates dW

dt > dB
dt >

dC
dt . This assumption enables

separating the timescales at which these dynamics occur, which helps in
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obtaining a mechanistic understanding of the model dynamics. In Section
4.4.1 we first study the dynamics in the fast state variable W , while treating
the slow dynamics in B and C as being static (i.e. as parameters). In Section
4.4.2 we add complexity by treating both W and B as a dynamic state
variables. In Section 4.4.3 we consider the full model, and discuss the effect
of dynamic C.

To study how the vegetation dynamics are affected by plant species traits
the steady state behavior of the model was studied for different combinations
water competitiveness, which is controlled by a number of different parameters,
and the fraction of hydrophobic compounds in plant tissue f , which differs
between species as shown in Appendix 4.D.

To study the role of SWR in droughts and the effect of increasing drought
severity, droughts were simulated by reducing the precipitation rate p with
10%, 20% and 40% for soils with and without hydrophobic compounds.

4.4 Model results

4.4.1 SWR induced bistability in soil conditions

When treating the state variables plant biomassB and hydrophobic compound
density C as parameters, the system can be analyzed by plotting the positive
terms and the negative terms of Equation 4.1 against available soil water
W , as shown in Figure 4.5. Water availability W increases where infiltration
(positive) exceeds the sum of water uptake and losses from the soil (negative).
The available water W decreases where infiltration exceeds the negative terms.
For a soil without hydrophobic compounds this means that W asymptotically
approaches the relatively wet equilibrium state depicted in Figure 4.5a,
where infiltration equals uptake plus losses. For a soil with hydrophobic
compounds the dynamics in available water are more complex. Hydrophobic
compounds induce water repellency of dry soils (Figure 4.3b) preventing
water from infiltrating into the rootzone (Figure 4.2b). This positive feedback
mechanism results in three intersections of the infiltration curve with the
uptake and loss curve, as shown in Figure 4.5b. Two of these equilibrium
states are stable (they attract) and one is unstable (it repels). The system
resides in one of the stable equilibrium states, meaning that soils are either
wet and hydrophilic or dry and hydrophobic.
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Figure 4.5: The positive (solid blue) and negative (dashed green) terms of Equation 4.1 plotted
against available water W , for soils without hydrophobic compounds (a) and with hy-
drophobic compounds (b). Stable and unstable equilibria are depicted with the closed
and open dots respectively. The arrows show the dynamics of the system when it is
out of equilibrium. Available water increases where infiltration exceeds the uptake and
losses, and decreases where the opposite occurs. For parameter values see Appendix
4.C.

4.4.2 The water-plants cycle: repetitive regime shifts

Changes in infiltration and uptake may change the number of equilibrium
states in soils that contain hydrophobic compounds. A decrease in rainfall p
for example can lower the infiltration curve such that the hydrophilic wet
state shown in Figure 4.5b vanishes. If the soil is in this state, a decrease
in rainfall can trigger a sudden shift to a hydrophobic dry state, as we will
discuss in Section 4.4.5. In our model however, such shifts need not be driven
by external changes but may also be triggered by changes in plant biomass
density. Plants may thrive and increase in biomass on the wet hydrophilic
soils, but may not survive and decrease in biomass at dry hydrophobic soils.
The gradual increase in water uptake from wet soils can initiate a shift to
hydrophobic dry soils, as shown in Figure 4.6a (I-II-III). On hydrophobic dry
soils plant biomass decreases and water uptake declines eventually resulting
in a shift back to hydrophilic wet soils (III-IV-I). The coupled plant and
water dynamics are therefore responsible for repetitive shifts between the two
stable equilibrium states of W (Figure 4.6b). These repetitive regime shifts
are fully internally driven, meaning that they occur without any external
forcing.
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Figure 4.6: Repetitive regime shifts in available water. (a) The positive (solid blue line) and
negative (dashed green line) terms of Equation 4.1 plotted against available water
W , for a soil with hydrophobic compounds and dynamic plant growth. The red dot
indicates the system state. (b) The dynamics in available water W and plant biomass
B over time. The period of the cycles with the current parameter setting is just over 1
year, which corresponds to approximately 15 plant generations (m−1). For parameter
values see Appendix 4.C.
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4.4.3 Cyclic dynamics and the SWR lock

As plants grow and litter is produced, hydrophobic compounds accumulate in
the soil. Over time, the system therefore moves from having one stable equi-
librium state (Figure 4.5a) to a bistable system (Figure 4.5b), thereby giving
rise to the repetitive regime shifts discussed in the previous section. Figures
4.7a and b show the phase planes of these two qualitatively different system
modes. They show that, as hydrophobic compound density C increases, the
stable equilibrium state becomes unstable after which the system alternates
between two branches of the W isocline. Figure 4.7c shows that for high C
there is a third system mode, in which the transition from a hydrophobic
dry soil to a hydrophilic wet soil is blocked by a stable equilibrium state that
emerges on the lower branch of the W isocline. At this stable equilibrium
state, which we will call the SWR lock, plant density equals zero. This
means that there is no accumulation of hydrophobic compounds and that
over time, as hydrophobic compounds decompose, the SWR lock vanishes.
The gradual accumulation and decomposition of hydrophobic compounds
gives rise to a second cycle, the W -B-C cycle (see Figure 4.8), in which the
system alternates between the two system modes depicted in Figures 4.7b
and c. Since the dynamics in C are slower than the plant dynamics, this
second cycle comprises a longer time interval than that of the repetitive shifts
of the W -B cycle.

4.4.4 The impact of SWR depends on plant species traits

The plant species traits that are included in this model can be captured with
only two variables. The first variable is W ∗, the B-isocline of Figure 4.7,
which is given by:

W ∗ =
mk3

cu−m
(4.7)

The W ∗ gives the minimum resource abundance required for plant biomass
to increase and is therefore inversely related to the water competitiveness of
a species: species with low W ∗ will eventually outcompete species with high
W ∗ (sensu Tilman, 1982). The second variable is the fraction of hydrophobic
compounds in plant litter f , which appears to vary between plant species as
shown in Appendix 4.D and controls the accumulation rate of hydrophobic
compounds (= fmB) and consequently the equilibrium value of C.

Figure 4.9 shows the equilibrium plant biomass B for different combina-
tions of water competitiveness (W ∗)−1 and hydrophobic compound fraction
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Figure 4.7: Phase planes for the model with different levels of hydrophobic compound density C.
Above the horizontal plant isocline (green dashed line) plant density increases as a
result of abundant available water. Below the plant isocline plant density decreases
due to insufficient available water. Left from the water isocine (blue solid line), water
increases due to a low uptake rates by plants. Right from the water isocline, water
decreases as a result of elevated uptake rates. As the dynamics in available water are
fast with respect to the plant dynamics, the system will usually be close to the water
isocline. For parameter values see Appendix 4.C.
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Figure 4.8: The dynamics in available water W , plant biomass B and hydrophobic compound
density C over time. The period of the cycles for the current parameter setting is just
over 10 years, which corresponds to approximately 150 plant generations (m−1) or
0.042 times the mean residence time of hydrophobic compounds (d−1). For parameter
values see Appendix 4.C. C was scaled to match the order of magnitude of B and W .
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Figure 4.9: Water competitiveness (W ∗)−1 and the fraction of hydrophobic compounds in plant
litter f control the equilibrium plant biomass and the emergence of cyclic dynamics.
fmin (= 0.0008 g g−1) and fmax (= 0.0065 g g−1) are the minimum and maximum
measured value of f respectively, as listed in Appendix 4.D. For the other parameter
values see Appendix 4.C.

f . It shows that the previously described W -B cycles occur only in a system
with species that contain sufficient hydrophobic compounds and that have an
intermediate water competitiveness. Species with a high water competitive-
ness do not display cyclic dynamics, as these species can cope with the dry
conditions of hydrophobic soils such that plant biomass does not decrease to
a level required for the shift from a hydrophobic dry state to a hydrophilic
wet state. However, the equilibrium biomass of these competitive species is
significantly reduced by SWR. This can be attributed to the fact that SWR
only affects the dry soils on which these species live. Species with a low
water competitiveness only live on wet soils that are unaffected by SWR, and
therefore, their equilibrium biomass remains unaffected even if the fraction
hydrophobic compounds in their litter is high. However, as we will show in
the next section, the combination of SWR and droughts can significantly
affect these species.

4.4.5 SWR can amplify drought stress

The equilibrium states discussed in the previous section and shown in Fig-
ure 4.9 represent the long term dynamics of the undisturbed coastal dune
ecosystem. However, the precipitation surplus strongly varies within one

107



4 Soil water repellency and vegetation dynamics in coastal dunes

year (Figure 4.1) and this variability is projected to increase over the coming
decades (KNMI, 2014). Figure 4.10 shows how droughts of increasing sever-
ity affect a species that has a low water competitiveness on soils with and
without hydrophobic compounds. For soils without hydrophobic compounds,
plants respond in a rather linear way to a sudden drop in precipitation
p, regardless of the drought severity. For plants on soils that do contain
hydrophobic compounds the system response depends on drought severity.
Minor droughts result in a similar linear response in vegetation as for soils
without hydrophobic compounds. Slightly more severe droughts, however,
have a disproportional effect on both available water and plant biomass. This
is caused by a temporary shift from a hydrophilic wet state to a hydrophobic
dry state (i.e. a single W -P cycle is triggered). An even greater reduction in
precipitation can trigger a permanent shift to a hydrophobic dry state. Here
the system gets trapped in the SWR lock, which leads to extinction of the
species and can only be undone by an increase in precipitation or, on longer
timescales, by decomposition of hydrophobic compounds. In Appendix 4.F
we show that the presented shifts can only be triggered by a rapid decline in
rainfall, e.g. by seasonality, and that a gradual decline in precipitation leads
to a linear system response. We also show that increasing precipitation back
to the original value allows soils to shift back to a hydrophilic wet state and
enables vegetation to recover. Finally we show that, in contrast to the weak
competitor modelled here, competitive species always respond in a linear way
to declines in precipitation.

4.5 Discussion and conclusions

In this study we obtained relationships governing soil water repellency (SWR)
from field and laboratory experiments to develop an ecological model which
enabled us to systematically study the role of SWR in the vegetation dynamics
of coastal dune ecosystems. The model suggests that SWR can result in
bistable soil conditions (Figure 4.5b), meaning that soils are either in a
hydrophilic wet state or in a hydrophobic dry state. If plants increase their
biomass on hydrophilic wet soils and decrease their biomass on hydrophobic
dry soils then cyclic vegetation dynamics can be triggered, in which soils
alternate between the two stable states in soil water (Figure 4.6). The
accumulation of soil hydrophobic compounds may trigger a SWR lock, which
interrupts the water-plant cycle (Figure 4.7) and gives rise to a water-plants-
hydrophobic compounds cycle which is characterized by long periods in which
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Figure 4.10: Amplification of drought stress for species with low water competitiveness caused by
a (temporary) shift to the hydrophobic dry state. A period of 3000 days was mod-
elled, which corresponds to 105 plant generations (m−1). For parameter values see
Appendix 4.C. For runs with gradually declining precipitation, runs with precipita-
tion increasing back to the original values and runs with a competitive species see
Appendix 4.F.
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vegetation is absent (Figure 4.8). The emergence of these cycles strongly
depends on two plant species traits: i) hydrophobic compound concentration
in plant tissues and ii) water competitiveness (Figure 4.9). Cyclic dynamics
only occur if plant tissues contain a relatively high fraction of hydrophobic
compounds. Depending on their water competitiveness, plants are affected by
SWR in three different ways. Species with intermediate water competitiveness
display SWR induced cyclic dynamics. Competitive species do not exhibit
such cyclic dynamics but for these species SWR significantly reduces their
productivity and equilibrium biomass. Cyclic dynamics are also not exhibited
by species with low water competitiveness. However, such species are very
sensitive to droughts. Depending on drought severity, soils covered by species
with low water competitiveness may temporally or permanently shift to a
hydrophobic dry state (Figure 4.10). This can result in a significant reduction
in plant biomass or even a permanent shift to a bare state.

As noted above, our study highlights the importance of two species traits
in coastal dune ecosystems: hydrophobic compound content of plant tissues
and water competitiveness. The hydrophobic compound contents of woody
species, e.g. pine and oak, are lower than of grasses (e.g. sheep fescue, red
fescue, tufted grass; see Appendix 4.D). Water competitiveness is likely to be
higher for woody plants than for grasses, herbs and mosses, since woody plants
generally have deeper roots and lower wilting point (Scholes and Walker,
2004). Our model suggests that species with high water competitiveness and
low hydrophobic compound content, i.e. woody species, are likely to exhibit
stable vegetation dynamics, while less competitive species, i.e. grasses, would
display cyclic dynamics or strong drought sensitivity.

Apart from the short term dynamics, our model suggests that SWR
may also be important on longer timescales. As it can take centuries for
hydrophobic compounds to decompose (see Appendix 4.E), their gradual
accumulation may result in long periods in which vegetation is absent (the
SWR-lock; see Figure 4.8). This, in combination with climatic variations
and increased wind erosion during the absence of stabilizing vegetation,
may contribute to the long term vegetation dynamics reported by Zagwijn
(1970). Our model also suggests that SWR can increase the sensitivity of the
dune ecosystem to disturbances such as shifts in precipitation (see Figure
4.10). Such disturbances are thought to be an important mechanism behind
retrogression (Peltzer et al., 2010), which has been observed in dune systems
of northwest Europe (Van der Maarel et al., 1985; Van Dorp et al., 1985).
Our model suggests that, even in the absence of disturbances, SWR can result
non-linear biomass development associated with retrogression (see Figure
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4.8).
While our study shows that SWR is a potential driver of vegetation

dynamics, externally driven shifts in vegetation composition could also change
water repellency of soils. An example of such a community shift is the
widely reported problem of grass encroachment, caused by elevated nitrogen
deposition rates (Kooijman and Van der Meulen, 1996; Veer and Kooijman,
1997; Kooijman et al., 1998; Veer, 1997; Van den Berg et al., 2005; Remke et al.,
2009). Grasses have a high hydrophobic compound content (see Appendix
4.D) and may therefore enhance SWR. In addition to shading (Veer and
Kooijman, 1997), this may be an important mechanism to outcompete other
plant species.

Focusing on dune ecosystems, our study raises the question whether our
findings apply to other ecosystems with different climates and soil textures.
Besides requiring water-limiting conditions for our model to be valid we
expect that soil textures other than sandy will not allow cyclic dynamics to
occur. We expect this because an important condition to be met for cyclic
dynamics is that plants grow and increase their biomass on hydrophilic wet
soils while they decrease biomass on hydrophobic dry soils. Whether this
occurs is mainly controlled by the SWR threshold that separates the two
soil states (see Figure 4.3b). Literature values suggest that this threshold
moves towards higher soil moisture values for finer textured soils (measured
ranges for sandy soils: 1.75-4.75 vol%, loamy sand/sandy loam soils: 28
grav% and peaty clay/clayey peat soils: 34.6-38.2 vol%; Dekker and Ritsema,
1994; Doerr and Thomas, 2000; Dekker and Ritsema, 1996). At these higher
values, plants may not be stressed enough to sufficiently reduce their biomass,
thereby not allowing a shift from a hydrophobic dry to a hydrophilic wet
state to occur (Figure 4.6IV-I), meaning that cyclic dynamics are hampered.
A second reason that other soil textures may not allow cyclic vegetation
dynamics to occur could be a weaker relationship between soil hydrophobic
compound concentration and SWR. While we found a significant correlation
(see Figure 4.3a) between total hydrophobic compound concentration and
SWR, we are not aware of studies on undisturbed finer textured soils that
report significant correlations (Doerr et al., 2005; DeBano, 1991).

Climate change for the northwest European coastal dunes encompasses
decreasing summer precipitation, increasing precipitation deficits in the grow-
ing season, a longer growing season, wetter winters and rising temperatures
(KNMI, 2015; IPCC, 2013). Our model suggests that an increase in drought
severity in combination with SWR could result in shifts from vegetated to
bare ecosystem states (see Figure 4.10). This finding is in line with ex-
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trapolations of a statistical model by Witte et al. (2008), that indicate an
increasing fraction of bare soil as precipitation deficit increases. Witte et al.
(2008) also hypothesize that, due to SWR, climate change may result in
increased heterogeneity and enhanced patchiness, a hypothesis that we could
not test with our model as it does not capture spatial processes. Besides
changes in summer precipitation, vegetation dynamics may be affected by
increasing winter precipitation and winter temperatures through enhanced
decomposition rates of (hydrophobic) organic compounds (Davidson and
Janssens, 2006; Kirschbaum, 1995; Laiho et al., 2004). The resulting decrease
in soil hydrophobic compound concentrations would lower the likelihood
of cyclic dynamics to occur. However, this effect may be diminished the
increased turnover of biomass caused by the extended growing season.

Although the presented model captures our observations of SWR in Zuid-
Kennermerland and the three key feedbacks (Figure 4.4) that potentially
control the SWR driven vegetation dynamics on coastal sand dunes, it only
partly captures the complexity of SWR on molecular scale and soil scale. The
current model uses total hydrophobic compound concentration as a predictor
for SWR of dry soils (Figure 4.3a and Equation 4.3). However, depending on
their origin (plant species / plant tissues), hydrophobic compounds differ in
their composition and consequently in their effect on SWR (Mao et al., 2014).
Mao et al. (2015) identified a set of hydrophobic compounds, so-called SWR
predictors, that can well predict SWR. These SWR predictors have a known
origin and can therefore also be used to assess the relative contribution of
different species and plant tissues to SWR. Mao et al. (2014) found that root-
derived hydrophobic compounds (suberins) are more hydrophobic than those
originating from leaf waxes (free lipids). This may result in different impacts
of hydrophobic compounds on SWR along the soil profile as leaves contribute
relatively more to the organic matter in topsoils than roots, whereas in
subsoils virtually all organic matter is derived from roots (Mao et al., 2014).
Finally, the various hydrophobic compound groups also decompose at different
rates (Weisberg, 2007; Feng et al., 2010; Spielvogel et al., 2010). A future
model could incorporate this complexity by considering different hydrophobic
compound groups or SWR predictors and by separating top- and subsoils
and above and below-ground biomass. A drawback of such a comprehensive
modelling approach would be that a qualitative analysis, as performed in
our study, may not be possible, meaning that analysis would need to be
done numerically. A second way our model can be extended is by including
spatial processes such as surface runoff and preferential flow that commonly
occur in water repellent soils. This may give insights in the role of SWR in

112



4.A Composition of the hydrophobic compounds.

the observed spatial heterogeneity and may be used to test the hypothesis
of enhanced patchiness of vegetation resulting from climate change (Witte
et al., 2008). Such models could also incorporate the temporal distribution of
precipitation events, which is thought to play a key role in spatially extended
ecosystems (Chapter 3) and is projected to change in the coming decades
(Tebaldi et al., 2006). Finally, the model could be extended to include fires.
Fires are known to be an important source of SWR in many ecosystems and
may not only directly affect vegetation dynamics, but also indirectly through
SWR and other soil surface changes (Ravi et al., 2009; Sankey et al., 2012).

Our findings, and those of future model studies, provide a more thorough
understanding of the inherent complexity of the dune ecosystem and thereby
they aid in assessing effect of climate change and human activities on the
dune ecosystem.
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Appendix 4.A Composition of the hydrophobic
compounds.

The total hydrophobic compound concentration was obtained by sequen-
tially extracting hydrophobic compounds from the soils with dichlorometh-
ane/methanol (DCM/MeOH) and iso-propanol/ammonia solution (IPA/NH3)
(Mao et al., 2014, 2015). Three fractions were obtained: DCM/MeOH ex-
tractable lipids (D), DCM/MeOH soluble part of IPA/NH3 extract (AS) and
DCM/MeOH insoluble part of IPA/NH3 extract (AI). Ten main compound
groups were identified in these three fractions: (D) fatty acid, (D) alcohol,
(D) alkane, (AI) fatty acid, (AI) alcohol, (AI) ω-hydroxy fatty acid, (AI)
α,ω-dicarboxylic acid, (AS) fatty acid, (AS) alcohol and (AS) ω-hydroxy
fatty acid. The total hydrophobic compounds concentration is obtained by
summing the concentrations of these ten compound groups. More details
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4 Soil water repellency and vegetation dynamics in coastal dunes

on the extraction methods can be found in the papers by Mao et al. (2014,
2015).

Appendix 4.B Gravimetric and volumetric soil
moisture content

In Figure 4.3b soil moisture is presented as gravimetric soil moisture content,
which is defined as:

Θg =
mw

mb +mw
(4.8)

where mw is the mass of water, mb is the bulk mass of the oven-dried soil
(40 gram) and mb +mw is the total weighted mass of the soil. If the density
of the soil is known, the gravimetric soil moisture content can be converted
to the volumetric soil moisture content using the following equation:

Θv =
Θg

1−Θg

ρb
ρw

(4.9)

where ρb is the density of the oven-dried soil (approximately 1.6 g cm−3 for
sandy soils) and ρw is the density of water.

Appendix 4.C Parameter values for the model

We adopted the parameters as used in the study by Rietkerk et al. (1997), but
use a higher precipitation rate: p = 2.5 mm day−1, u = 0.05 dm3 g−1 day−1,
r = 0.1 day−1, k3 = 3 mm and W ∗ = 7 mm, where W ∗ = mk3

cu−m . To account
for the lower temperatures and incoming solar radiation, the dynamics in
plant biomass B were assumed to be a factor 10 slower compared to the
semi-arid regions for which the model by Rietkerk et al. (1997) was developed
(i.e. c = 1 g dm−3 and m = 0.035 day−1). This assumption does not affect
the presented dynamics, but merely sharpens the shifts between hydrophilic
wet and hydrophobic dry soils (Figure 4.6b). For the infiltration function,
the SWR threshold k1 was set to 7 mm and exponent α was set to 5.

In this paper B and C are sometimes assumed to be constant, their values
for the different figures are listed in Table 4.2. As indicated in the table, C
is dynamic in Figures 4.8 and 4.9. In Figure 4.8 we triggered a SWR lock by
selecting a low value of k2 (k2 = 5 g m2; which corresponds to a high impact
of hydrophobic compounds on infiltration) and a high value of f (f = 0.0065
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4.D Hydrophobic compound content in plant tissues

g g−1; which is the maximum measured value listed in Appendix 4.D). In
Figure 4.9 we used a more realistic value for k2 (k2=250 g m2) and selected
the lower and upper measured of f (f = 0.0008 and f = 0.0065 g g−1). For
both figures d = 1 × 10−5 day−1, which corresponds to a mean residence
time of about 250 years (see Appendix 4.E). For the runs used to illustrate
the drought stress amplification (Figure 4.10) we selected a species with low
water competitiveness (W ∗ = 14 mm) by lowering the conversion coefficient
c to a value of 0.85 g dm−3.

Table 4.2: Values for B and C as used in the different figures. Hyphens indicate dynamic B or C.

Figure B [g m−2] C [g m−2]

4.5a 20 0
4.5b 20 4k2

4.6a I 5 4k2

4.6a I & IV 20 4k2

4.6a III 35 4k2

4.6b - 4k2

4.7a - 0
4.7b - 4k2

4.7c - 9k2

4.8 - -
4.9 - -
4.10 - 0 / 4k2

Appendix 4.D Hydrophobic compound content in
plant tissues

The hydrophobic compound content of different plant tissues were obtained
by summing the mass of the identified hydrophobic compounds in Mao
et al. (2015) that comprise extractable lipids (alkanes, alcohols and fatty
acids) and ester-bound lipids (alcohols, fatty acids, ω-hydroxy fatty acids,
α,ω-dicarboxylic acids) and dividing by the total mass of the plant tissue.
The results are presented in Table 4.3. Part of the data (*) refers to Mao
et al. (2015) and part of the data (**) refers to Mao et al. (under review).
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Appendix 4.E Decomposition rates of hydrophobic
compounds in soils.

Hydrophobic compounds in soils are decomposed by abiotic and biotic pro-
cesses. The decomposition rate of organic matter is controlled by many
internal and external factors, such as temperature (Davidson and Janssens,
2006), microorganisms, compound quality and water availability (Melillo
et al., 1982; Riederer et al., 1993; Norby et al., 2001; Otto and Simpson,
2006) and land-use (Wiesenberg, 2004). Table 4.4 lists the mean residence
times (MRT) of different hydrophobic compounds in various soils.
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4.F Additional drought simulations

Appendix 4.F Additional drought simulations

In this appendix we show additional model runs akin the ones of Figure 4.10,
but now with slowly decreasing precipitation (Figure 4.11) and precipitation
shifting back to the original values (Figure 4.12). Figures 4.13 and 4.14 are
the same as Figures 4.10 and 4.12, but show the response of a competitive
species (low W ∗; right side of Figure 4.9) to changes in precipitation. All
runs are on a soil with hydrophobic compounds (C = 4k2) as in the lower
row of Figure 4.10.

time t

W

B
p

time t

p

Figure 4.11: Only rapid decreases in precipitation can trigger a shift to a hydrophobic dry state
without vegetation. Precipitation was reduced by 40 % over a period of 1000 days
(left) and 500 days (right), corresponding to a rate of change of 0.001 mm day−2

(≈133 mm year−2) and 0.002 mm day−2 (≈266 mm year−2) respectively. Parameter
values are the same as for Figure 4.10.

p

time t

W

B

Figure 4.12: Restoring the original values of the precipitation of Figure 4.10 (2.5 mm day−1)
enables plants to recover. Parameter values are the same as for Figure 4.10.
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p

time t

W

B

Figure 4.13: Competitive species respond in a linear way to decreases in precipitation. Parameter
values are the same as for Figure 4.10, except W ∗ = 1.62 mm, which was obtained
by setting c to 2 g dm−3.

p

time t

W

B

Figure 4.14: Same as for Figure 4.12, but now for the competitive species described in the caption
of Figure 4.13.
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5 Ecosystems off track: Rate-induced
critical transitions in ecological
models.

Siteur, K., Eppinga, M. B., Doelman, A., Siero, E. and Rietkerk, M. (2016).
Ecosystems off track: Rate-induced critical transitions in ecological models.
Accepted for publication in Oikos.

Abstract

Theory suggests that gradual environmental change may erode the resilience of ecosystems

and increase their susceptibility to critical transitions. This notion has received a lot of

attention in ecology in recent decades. An important question receiving far less attention

is whether ecosystems can cope with the rapid environmental changes currently imposed.

The importance of this question was recently highlighted by model studies showing that

elevated rates of change may trigger critical transitions, whereas slow environmental change

would not. This paper aims to provide a mechanistic understanding of these rate-induced

critical transitions to facilitate identification of rate sensitive ecosystems. Analysis of rate

sensitive ecological models is challenging, but we demonstrate how rate-induced transitions

in an elementary model can still be understood. Our analyses reveal that rate-induced

transitions (i) occur if the rate of environmental change is high compared to the response

rate of ecosystems, (ii) are driven by rates, rather than magnitudes, of change and (iii)

occur once a critical rate of change is exceeded. Disentangling rate-induced transitions from

classical transitions in observations would be challenging. However, common features of

rate-sensitive models suggest that ecosystems with coupled fast-slow dynamics, exhibiting

repetitive catastrophic shifts or displaying periodic spatial patterns are more likely to be

rate sensitive. Our findings are supported by experimental studies showing rate-dependent

outcomes. Rate sensitivity of models suggests that the common definition of ecological

resilience is not suitable for a subset of real ecosystems and that formulating limits to

magnitudes of change may not always safeguard against ecosystem degradation.
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5 Ecosystems off track

5.1 Introduction

Theoretical studies have suggested that gradual changes in environmental
conditions may trigger so-called critical transitions in ecosystems, which would
explain unexpected ecosystem degradation and the sudden emergence of cyclic
or chaotic dynamics (Holling, 1973; Scheffer et al., 2001; Scheffer, 2009). These
studies found that gradual external change can undermine the resilience of
ecosystems, thereby increasing their susceptibility to critical transitions. The
resilience of ecosystems can be assessed with ecological models through steady
state analysis. Steady state analysis allows determining critical magnitudes of
change in external conditions and critical levels of disturbance beyond which
ecosystems shift to alternative dynamics. The assumption behind steady
state analysis is that an ecosystem is in a state in which all processes balance
out and no change can be observed (i.e. in dynamic equilibrium). Although
the assumption that ecosystems reside in such a steady state has been useful
in assessing their resilience under static or slowly changing environmental
conditions, it does not hold when changes in environmental conditions are
rapid relative to the attractive capacity of a steady state. The fact rapid
environmental changes may lead to unexpected ecosystem dynamics has
received only little attention in the ecological community (Scheffer et al.,
2008). This is remarkable as the environmental changes in the Anthropocene
occur at unprecedented rates (Joos and Spahni, 2008; Kaplan et al., 2011;
Klein Goldewijk et al., 2011) and may be too rapid for ecosystems to cope with
(Walther et al., 2002). In this study, we show that models indeed suggest
that some ecosystems may fail to respond to rapidly changing external
conditions, which can lead to a novel type of critical transition. We identify
mechanisms driving such rate-induced critical transitions, provide possible
ways forward regarding identification of rate sensitive ecosystems and discuss
the implications of rate-induced critical transitions for the general view on
ecological resilience.

5.2 Critical transitions, Steady state analysis and
Resilience

A critical transition is a shift of a system to a qualitatively different dynam-
ical regime triggered by changing external conditions or by a disturbance.
Critical transitions can be super- or subcritical. Supercritical transitions are
continuous and reversible whereas subcritical transitions are discontinuous
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and require disproportional efforts to reverse. Subcritical transitions that
occur between steady ecosystem states are also referred to as catastrophic
shifts (Scheffer et al., 2001). Well-known examples of catastrophic shifts are
transitions of shallow lakes from clear to turbid states, triggered by increases
in nutrient input (Scheffer et al., 1993), of grazing systems from vegetated to
(bare) overgrazed states forced by an increase in herbivore density (Noy-Meir,
1975; May, 1977; Rietkerk et al., 1996, 1997) and of marine ecosystems driven
by (combinations of) sea temperature rise, overfishing, habitat loss, invasive
species and pollutants (Jackson et al., 2001; Petraitis, 2013). The alternative
dynamics to which a system transitions do not necessary have to be steady
over time. Increases in primary production through nutrient enrichment, for
example, are known to lead to cyclic dynamics between predators and preys
(Huffaker et al., 1963; Rosenzweig, 1971). In addition to these predator-prey
cycles more discrete repetitive catastrophic shifts can occur in ecosystems
with coupled fast-slow dynamics (Rinaldi and Scheffer, 2000). Examples of
such ecosystems are the spruce-budworm ecosystem, in which the recovery
of trees from defoliation occurs at a much slower rate than the budworm
outbreaks (Ludwig et al., 1978; Holling, 1988) and coastal dune ecosystems
in which repetitive shifts between wet and dry soils are thought to occur
due to soil water repellency, thereby controlling the much slower vegetation
dynamics (Chapter 4).Besides cyclic and static dynamics, ecosystems may
transition to apparently random dynamics when environmental conditions
change. Such chaotic dynamics are solely caused by deterministic processes
and can even occur if the mechanisms controlling the system are very simple
and are ought to result in trivial behaviour (May, 1976; Tilman and Wedin,
1991). In addition to transitions towards alternative temporal dynamics, spa-
tially extended ecosystems can change their spatial structure in response to
environmental changes. In arid ecosystems for example, declining rainfall may
trigger the formation of spatially periodic patterns in vegetation (Valentin
et al., 1999; Klausmeier, 1999; Von Hardenberg et al., 2001; Rietkerk et al.,
2002).

The notion that environmental change may trigger non-linear ecosystem
response can largely be attributed to modelling efforts in the second part of
the 20th century. In the field of mathematics, the description of natural phe-
nomena using difference and differential equations is referred to as dynamical
systems theory, which was introduced by Sir Isaac Newton back in the 17th

century to lie the foundations of what is now known as classical mechanics
(Newton, 1687) and which was later further developed by Henri Poincaré
(Poincaré and Magini, 1899). Although the term ecosystem had already been
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coined in the 1930s (Tansley, 1935; Willis, 1997) and population models had
been used well before that (Pisano, 1202; Verhulst, 1838; Volterra, 1928), the
dynamical systems approach only got widely applied in ecology in the 1970s
(e.g. Rosenzweig, 1971; Noy-Meir, 1975; May, 1977).

The application of the dynamical systems approach to ecology was aided by
graphical approaches that enabled analysis of ecological models (e.g. Rosenz-
weig and MacArthur, 1963). However, the rapid development of theoretical
ecology was also closely related to advancements in the mathematical field
of bifurcation theory, or more specifically catastrophe theory. Catastrophe
theory, from which the term catastrophic shift is derived, was introduced by
René Thom (Thom, 1975) and further developed by Christopher Zeeman
(Zeeman, 1976; Zeeman and Barrett, 1979). It applies topology to families
of fixed points (or steady states/equilibria) to obtain a set of elementary
phenomenological models that show how “continuous causes can give rise
to discontinuous effects” (Zeeman, 1982). One of the elementary models de-
scribes the so-called fold catastrophe. Equation 5.1 is one way this elementary
model can be formulated (modified from Ashwin et al., 2012) and describes
the dynamics of state variable x as function of itself and two parameters a
and b:

dx

dt
= b− (x− a)2 (5.1)

Figure 5.1a shows that a gradual decline in parameter b initially results in a
minor response of state variable x. However, if parameter b decreases beyond
a critical threshold value then a catastrophic shift occurs. This behaviour,
as well as that of many ecological models, can very well be understood by
applying a steady state approximation. As noted above, this approximation
enables the derivation of steady states (i.e. dynamic equilibria). Over time,
the actual state of a system will move to a steady state if it is stable, and will
move away from it when unstable. If a stable steady state only attracts within
a certain “basin of attraction” (Lewontin, 1969), it is said to be locally stable
(as opposed to globally stable). The proximity of the system state to the
boundaries of the basin of attraction and the change in parameters required
to pass critical thresholds (i.e. the persistence of the basin of attraction)
determines the resilience of an ecosystem. Thus, ecological resilience can be
defined as a measure of the ability of ecosystems to absorb changes of state
variables, driving variables, and parameters, and still persist (Holling, 1973).

Figure 5.1 shows that, as parameter b declines, the system closely follows a
stable steady state (Figure 5.1a) until the basin of attraction vanishes (Figure
5.1b). Steady state analysis allows deriving the critical threshold value of
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Figure 5.1: (a) Critical transition in a fold catastrophe model (Equation 5.1) triggered by a gradual
decrease in parameter b (db/dt = −0.1 and a = 6). (b) Potential landscapes for different
values of b, showing the vanishing of the basin of attraction as b declines. The coloured
dots depict the system state at b = 2 (green), b = 1 (blue), b = 0 (pink) and b = −0.1
(red). In (a) the gray lines give the stable (solid) and unstable (dashed) steady states
of the system (i.e. assuming db/dt = 0). See Appendix 5.A for a derivation of the
steady states and potential diagrams.

b at which the basin of attraction vanishes, as well as the boundary of the
basin of attraction, here given by the unstable steady state (see Appendix
5.A). Given the external conditions and the state of the system, this allows
deriving the critical magnitude of change in b and the critical perturbation
size in terms of x, beyond which the system shifts to alternative dynamics
as depicted in Figure 5.1a. These properties directly relate to the definition
of ecological resilience (Holling, 1973). The susceptibility of ecosystems to
the types of critical transitions described so far can thus be assessed and
understood through steady state analysis of ecological models.

5.3 Rate-induced critical transitions

As illustrated in Figure 5.1, steady state analysis can often properly explain
the complex dynamics exhibited by ecological models. However, one can
question the validity of the steady state assumption if external conditions
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change more rapidly. From a mathematical perspective, models with explicit
time dependency of one of the parameters (also referred to as non-autonomous,
open or ramped systems; Wieczorek et al., 2010; Ashwin et al., 2012) do
generally not have steady states. In analysis of ecological models it is therefore
often implicitly assumed that external conditions change slowly compared
to the attractive capacity of an ecosystem’s stable steady state, such that it
approximates the actual system state. While this may be true for ecosystems
that are relatively isolated from human activities, the currently observed
rates of anthropogenic environmental change could be much higher than the
rate at which ecosystems can respond to these changes (Walther et al., 2002).
This could result in dynamics that differ from the dynamics predicted by
steady state analyses and may even trigger unexpected critical transitions.
This would have consequences, not only for the validity of currently applied
model analyses, but also for our view on ecological resilience (e.g. as defined
by Holling, 1973).

Runs of the model described by Equation 5.1 suggest that if external
conditions change rapidly, the actual system state can indeed strongly deviate
from the stable steady state, as shown in Figure 5.2a. For relatively slow
external changes, now simulated by increasing the value of parameter a, the
actual system state simply lags behind the stable steady state. However,
above some critical rate of change in a, the system is unable to cope with
the rapid changes. The rapid increase in a then drives the system state out
of the basin of attraction (Figure 5.2b) and away from the stable steady
state. Notice that in this example the two classical measures for resilience
identified in the previous section, i.e. the width and the persistence of a
basin of attraction (Figure 5.1a), are not affected by changes in a. Yet, high
rates of change in a can still trigger a critical transition.

The critical transition shown in Figure 5.1 occurs once a critical magnitude
of change is exceeded, which can be derived by calculating the distance to
the critical threshold value of b. In contrast, the transition depicted in Figure
5.2 occurs when external conditions (parameter a) change with a rate that
exceeds a certain critical rate of change. To distinguish between the two types
of transitions we will refer to them with the terms “change-induced critical
transition” and “rate-induced critical transition” respectively. Systems that
are able and likely to display rate-induced critical transitions will be referred
to as “rate sensitive systems”.

Although it is quite intuitive that some ecosystems may not be able to
respond timely to rapidly changing conditions, this concept has only recently
received attention in theoretical ecology (Scheffer et al., 2008). In the
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field of neuroscience, however, rate sensitivity of neural cells is a well-known
phenomenon. Neural cells are excitable, that is, if an electric current is passed
through neural cell tissue excitation can occur, driving further transmission of
the current. Excitation only occurs if the current exceeds a certain threshold
value. However, accommodation occurs in response to the current, meaning
that the critical threshold rises over time (Hill, 1936). As a result, excitation
is rate dependent. A model that reproduces these dynamics is a modification
of the Van der Pol oscillator (Van der Pol, 1920; FitzHugh, 1961) and shows
that excitation can occur if sufficiently large “cathodal shock” is applied
(FitzHugh, 1961).

More recently, rate-induced critical transitions have received considerable
attention in the mathematical literature (Wieczorek et al., 2010; Ashwin
et al., 2012; Perryman, 2015). A particularly well studied model is the
model by Luke and Cox (2011). Their model shows that rising atmospheric
temperatures may trigger enhanced soil microbial respiration which may
further heat soils eventually resulting in a sudden loss of soil carbon and
increased CO2 emissions into the atmosphere. This non-linear response, which
they refer to as the “compost-bomb instability”, only occurs if atmospheric
temperatures rise quickly and is thus rate-induced.

In the ecological literature, a rate-induced critical transition was first
described in a model study by Scheffer et al. (2008). In their model, which
captures the dynamics of plants and herbivores, plants become less palatable
as their biomass increases. An increase in plant productivity results in an
increase of herbivore biomass, provided that the productivity rises slowly
compared to the response rate of the herbivores. If, on the other hand,
productivity rises rapidly, the model shifts from a herbivore controlled state
to a plant dominated state without herbivores (Scheffer et al., 2008). In Box
5.1 we show that rate-induced critical transitions can occur more generally
in systems with coupled resource and consumer dynamics.
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Figure 5.2: (a) Rate-induced critical transition in a fold catastrophe model (Equation 5.1) triggered
by a rapid increase in a. Increases in a can trigger a critical transition, provided that
the rate of change in a is sufficiently high. (b) The shape of the potential landscape is
not affected by a, however rapid changes in a can pull the system out of the basin of
attraction. In this figure b = 2 and da/dt =0-3. The coloured dots depict the actual
system state at a = 0, a = 2, a = 4 and a = 6 for different rates of change. In (a)
the gray lines give the stable (solid) and unstable (dashed) steady states of the system
(i.e. assuming da/dt = 0). See Appendix 5.A for a derivation of the steady states and
potential diagrams.
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Box 5.1. An ecological example: rate-induced overconsumption in
the Rosenzweig-McArthur model

An ecological model that can display rate-induced critical transitions is
the model by Rosenzweig and MacArthur (1963) with slow consumer
dynamics:

dR

dt
= rR

(
1− R

K

)
− aCR

R+Rh
(5.2)

dC

dt
= ε

(
eaCR

R+Rh
−mC

)
(5.3)

Here R and C are resource and consumer densities respectively (e.g. in g
m−2), r is the resource growth rate (in day−1), K is the carrying capacity
(in g m−2), a is the maximum consumption rate (in day−1), Rh is the
resource density at which consumption is half this rate (in g m−2), e
is an efficiency constant, m is the consumer mortality rate (in day−1)
and ε is a small dimensionless parameter that controls the difference in
time scales between the fast resource dynamics and the slower consumer
dynamics. Notice that what we consider here as consumers and resource
is sometimes referred to as exploiter and victim (Rosenzweig, 1971),
predator and prey (Rosenzweig and MacArthur, 1963) or herbivores and
plants (Noy-Meir, 1975) respectively.

Figure 5.3 shows how the model responds to declining resource growth
rate r. The steady states of the system predict that a change in r affects
the consumer density, but not the resource density, as shown in Figure
5.3a. Model runs with declining r show something different (Figure 5.3b
and c). Since the response of consumers is slow, due to the low value
of ε, the actual consumer density lags behind its steady state (Figure
5.3b). This means that consumption is higher than predicted with steady
state analysis, thereby lowering the resource density (Figure 5.3c). The
response to a slow decline in r is rather linear, since the decrease in
consumer density is rapid enough to diminish consumption to a level that
enables high resource densities to be maintained. If, however, the rate of
change in r is slightly faster, the consumer density does not decline fast
enough and overconsumption occurs resulting in sudden depletion of the
resource. The rate of the consumer dynamics (controlled by ε), greatly
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affects the occurrence of rate-induced critical transitions in this model,
since the system can tolerate more rapid decreases in r if consumers are
able to change their density faster (high ε).
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Figure 5.3: A rate-induced critical transition in the model by Rosenzweig and MacArthur
(1963) (Equations 5.2 and 5.3) triggered by a decreasing resource growth rate
r. (a) Phase plane of the Rosenzweig-MacArthur model. The green lines are
resource isoclines (dR/dt = 0) for r = 2.5 (dashed), r = 2 (solid) and r = 1.5
(dash-dotted). The blue lines are consumer isoclines (dC/dt = 0). Circles indicate
stable (filled) and unstable (open) steady states (dR/dt = dC/dt = 0). The black
arrows show the movement of the stable steady state as r decreases. The blue
and green arrows give the direction of change if the system is not in a steady
state. (b,c) Model response to slowly and less slowly declining r. In this figure
r = 1.5-2.5, a = 1, e = 1,K = 10,m = 0.75, ε = 0.01 and Rh = 2. The model
runs were initiated in the stable steady state of the system at r = 5 (R = 6,
C = 16).

5.4 Analysis of rate sensitive models

As can be deduced from the example shown in the previous section and in
Box 5.1, steady state analysis is insufficient to describe the dynamics of rate
sensitive models to rapid changes in parameters as it cannot predict rate-
induced critical transitions and therefore may overestimate resilience. Brute
force numerical techniques, such as model runs with varying rates of change
(for example Figure 5.2a, Figure 5.3bc and Scheffer et al., 2008), can be used
to study rate sensitivity and to estimate critical rates of change. However,
to obtain more general insights into the mechanisms that drive rate-induced
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transitions and to be able to derive explicit expressions for critical rates of
change, analytical techniques are required. Unfortunately, an equivalent to
steady state analysis that can be universally applied to study rate sensitive
systems has not yet been developed. However, a comprehensive attempt
to understand rate sensitivity in models with coupled fast-slow dynamics
(such as the model by Rosenzweig and MacArthur (1963) described in Box
5.1) was introduced in a paper by Wieczorek et al. (2010). Their approach
allows derivation of a critical rate of change through desingularization, time
reversal and calculation of eigenvectors. Discussion of this approach goes
beyond the scope of this paper, but in the following section we will present
two less comprehensive alternative approaches that allow us to analyse the
rate-induced critical transition in the model described by Equation 5.1. These
alternative approaches are introduced here to provide a general mechanistic
understanding of rate-induced critical transitions and to enable discussion
on the outstanding challenges that come with the analysis of rate sensitive
ecological models.

5.4.1 Graphical analysis of Equation 5.1

In Figure 5.2 we showed that a rate-induced critical transition occurs in
the model of Equation 5.1 when the actual system state leaves the basin
of attraction of the stable steady state, i.e. when it passes the unstable
steady state of Equation 5.1. This event is triggered by the movement of
unstable steady state, which in turn is driven by the change in parameter
a. Whether the unstable steady state is able to overtake the actual system
state, can be assessed graphically by comparing the maximum response rate
of the system under static conditions (i.e. the maximum value of dx/dt)
with the movement rate of the unstable steady state, as shown in Figure 5.4.
This graphical comparison shows that the movement rate of the unstable
steady state exceeds the maximum response rate of the system if parameter
a changes with a rate beyond a critical rate of change of da/dt = 2.

This result can also be obtained analytically by deriving both the maximum
response rate and the movement rate of the unstable steady state. The
maximum of Equation 5.1 is located at x = a, meaning that the maximum
response rate equals:

dx

dt
= b− (x− x)2 = b (5.4)

The unstable steady state is given by x̄− = a−
√
b (see Appendix 5.A) and

its derivative to a equals 1. Thus, the moving rate of the unstable steady
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Figure 5.4: A rate-induced critical transition occurs in the model described by Equation 5.1 if the
movement rate the unstable steady state exceeds the maximum response rate of the
system. (a) Dynamics in x under static conditions, for a = 6 and b = 2. Here x̄+ is the
stable steady state and x̄− is unstable steady state, which moves with a rate depicted
in (b) as a changes.

state is given by:
dx̄−
dt

=
dx̄−
da

da

dt
=
da

dt
(5.5)

Equalizing Equations 5.4 and 5.5 yields a critical rate of change in a of:

da

dt
= b (5.6)

beyond which the unstable steady state is able to overtake the actual system
state. Notice that both the graphical and the analytical result correspond
with the model runs presented earlier in Figure 5.2.

5.4.2 Steady lag analysis of Equation 5.1

Figure 5.2a shows that under steady conditions (da/dt = 0) the system can
be assumed to reside in a stable steady state x = x̄+, but that as parameter
a changes over time (da/dt 6= 0) the actual state of the system starts to lag
behind its stable steady state. The actual state of the system can then be
written as the sum of the stable steady state x̄+ and the lag of the system
state ξ:

x = x̄+ + ξ (5.7)
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with x̄+ = a+
√
b (see Appendix 5.A). Rewriting gives ξ = x− x̄+, so that

the change of the lag ξ over time can be written as:

dξ

dt
=

d(x− x̄+)

dt

=
dx

dt
− dx̄+

dt

= b− (x− a)2 − dx̄+

da

da

dt

= b− (x̄+ + ξ − a)2 − d(a+
√
b)

da

da

dt

= b− (a+
√
b+ ξ − a)2 − da

dt

= b− (
√
b+ ξ)2 − da

dt
(5.8)

For linear changes in a (i.e. constant da/dt) Equation 5.8 becomes autonom-
ous. This means that, unlike Equation 5.1, it does not explicitly depend on
the changing parameter a. Therefore, we can set dξ/dt to zero to obtain the
steady state of Equation 5.8, or the “stead lag” of x behind the steady state
of Equation 5.1.

Two steady lags can be found of which ξ̄+ is stable (see Appendix 5.B for
stability analysis):

ξ̄± = ±
√
b− da

dt
−
√
b (5.9)

This equation has no solution for da/dt > b. Indeed, Figure 5.5 shows that,
in line with the analysis in the previous section and model runs of Figure
5.2a, this model has a critical rate of increase for parameter a of:

da

dt
= b (5.10)

above which the actual system state is unable to track the stable steady
state. Notice that by rewriting in terms of ξ, the model reduces to the fold
catastrophe model with da/dt being the driving parameter.

5.4.3 Understanding rate sensitivity of ecological models

The analyses of Equation 5.1 presented in Sections 5.4.1 and 5.4.2 provide
a number of key insights regarding the general mechanisms that could be
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Figure 5.5: The model described by Equation 5.1 lags in a way equivalent to the fold catastrophe
model with the rate of change da/dt as driving parameter. The gray solid lines are
stable steady lags and the dashed lines are unstable steady lags. The colored lines and
dots correspond to the model runs shown in Figure 5.2

responsible for rate-induced critical transitions in ecological models and real
ecosystems. First, the graphical analysis of Section 5.4.1 suggests that rate-
induced critical transitions are likely to occur when the rate of environmental
change is high relative to the maximum response rate of ecosystems (Figure
5.4). Second, analysis of the lag of the system state behind its steady state
revealed that rate-induced critical transitions are similar to change-induced
critical transitions, e.g. they can be described by the fold catastrophe model
(Figure 5.5), but are driven by rates, rather than magnitudes, of environmental
change. Finally, both analyses suggest that rate-induced critical transitions
occur once a critical rate of change is exceeded.

Although both analyses provide general mechanistic insights regarding rate
sensitivity of models and possibly of real ecosystems, they are only of limited
value when studying specific mechanisms that drive rate-induced critical
transitions in a particular ecosystem or in more comprehensive ecological
models. First, the graphical approach of Section 5.4.1 can only be applied to
models with one state variable, such as Equation 5.1, or models with coupled
fast-slow dynamics (e.g. Rosenzweig and MacArthur, 1963, Box 5.1) that
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can be reduced to a system with one state variable through a quasi-steady
state approximation. Second, both the maximum response rate and the
movement rate of the unstable steady state of Equation 5.1 remain unaltered
as parameter a changes, which is generally not the case for comprehensive
ecological models. Applying this graphical approach on ecological models
could therefore lead to erroneous critical rates of change. Finally, the steady
lag approach has its limitations, as it can only be applied to models with an
autonomous lag equation (Equation 5.8). For models other than Equation
5.1, the lag generally depends on the changing parameter, meaning that the
lag is explicitly time dependent and a steady lag cannot be assumed.

In Appendices 5.C and 5.D we apply both analyses on the ecological model
by Rosenzweig and MacArthur (1963, Box 5.1) to study whether the discussed
limitations do indeed result in significant errors when applying the analyses
to assess critical rates of change in parameters of ecological models. Both
analyses yield a critical rate of change in parameter r of dr/dt = −1.5× 10−3

day−2 or:
dr

dt
= εr

(
ea(K −Rh)

K +Rh
−m

)
(5.11)

This value indeed differs from the critical rate of change of dr/dt = −2×10−3

day−2 found through model runs (Figure 5.3c). This suggests that, although
helpful for identifying the general mechanisms behind rate sensitivity, the
presented analyses can only be applied to a limited subset of models.

5.5 Identifying real rate sensitive ecosystems

While the critical thresholds that are responsible for change-induced trans-
itions can be found relatively easily using steady state analysis, critical rates
of change are more difficult to detect, as pointed out in the previous section.
As a result, the identification of rate sensitive models and ultimately of rate
sensitive ecosystems will be more challenging. There are, however, some
common features of rate sensitive models that may be useful in doing so, as
we will discuss in this section.

In contrast to change-induced critical transitions, ecosystems that respond
slowly to environmental change are more sensitive to rate-induced critical
transitions. This means that ecosystems with at least one slow state variable
are more likely to exhibit rate-induced transitions. Such transitions may
however not significantly affect the slow variable (Hughes et al., 2013),
but may be prominent in a fast state variable with which it interacts. In
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the model by Rosenzweig and MacArthur (1963, Box 5.1) for example,
the slow consumers fail to cope with their declining resource, leading to
overconsumption and a collapse in resource density. Other examples are the
model by Luke and Cox (2011) with slow soil carbon dynamics and fast soil
temperature dynamics and the model by Scheffer et al. (2008) with slow
herbivore and fast plant dynamics, discussed in Section 5.3. In these models
the fast variables have hump-shaped isoclines. This means that the fast
variables are controlled by non-linear processes. In the model by Rosenzweig
and MacArthur (1963) for instance, both the logistic growth of the resource
and its consumption are non-linear processes and in the model by Luke and
Cox (2011) the soil carbon decomposition rate increases exponentially with
soil temperature. These examples suggest that ecosystems that have coupled
slow and fast non-linear processes may be more likely to undergo rate-induced
critical transitions.

Models with coupled fast-slow dynamics are also known to exhibit repetitive
catastrophic shifts, as previously mentioned in Section 5.2. These systems
have the same properties as the rate sensitive systems described above,
but are in an unstable regime. Ecosystems in which such cyclic dynamics
have been observed may therefore be rate sensitive under slightly different
environmental conditions. Observing such dynamics at one location may
therefore be an indicator that elsewhere along an environmental gradient
the ecosystem is rate sensitive. In coastal dune ecosystems for example,
water repellency of soils results in nonlinear soil water dynamics (Dekker
and Jungerius, 1990; Dekker and Ritsema, 1994). In these ecosystems the
combination of slow plant dynamics and soil water repellency is thought
to drive repetitive catastrophic shifts under some conditions and to trigger
rate-induced critical transitions in response to declining precipitation under
other conditions (Chapter 4).

Recent studies suggest that ecosystems with spatially periodic patterns
may exhibit rate dependent behaviour (Chapter 2; Sherratt, 2013a; Chen
et al., 2015). Such patterns are ubiquitously observed in arid ecosystems
(Deblauwe et al., 2008), which are currently undergoing rapid climatic changes
(Chapter 3; Tebaldi et al., 2006). In periodically patterned ecosystems patches
of consumers (e.g. plants) compete for a limiting resource (e.g. water).
As resource input declines, patches go extinct and the remaining patches
rearrange to regain an optimal periodic pattern. If the rearrangement process
occurs slowly with respect to the rate of decrease in resource input, a large
fraction or even all of the patches may go extinct simultaneously. This is
caused by a delayed transition, which forces the model to cross a so-called
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period-doubling bifurcation (Siero et al., 2015, Chapter 2;). Rate sensitivity
of spatially extended models suggests that spatially periodic patterns could
serve as an indicator of real rate sensitive ecosystems.

The common properties of rate sensitive models could be used to determine
the ability of ecosystems to undergo rate-induced critical transitions. To assess
their susceptibility to rate-induced transitions, one could estimate the recovery
rate of ecosystems to perturbations. As shown in Box 5.2 for the model
described by Equation 5.1, ecosystems can be expected to become slower in
recovering from perturbations when rates of change approach critical rates
of change. When subject to natural variability, this could lead to increasing
temporal autocorrelation and variance in an ecosystem’s state variables. In
addition, low diversity and high connectivity are architectural features are
known to make ecological networks susceptible to critical transitions (Scheffer
et al., 2012). Finally, the susceptibility of ecosystems to rate-induced critical
transitions could be assessed using the mechanistic insights provided by the
analyses in Section 5.4. For example, maximum observed response rates in
experiments or time series of real ecosystems could be used to assess the
susceptibility of ecosystems to rate-induced critical transitions. Note that
these types of analyses are now already being applied to real ecosystems (e.g.
Carpenter et al., 2011, 2014), and could be extended to specifically study
rate-induced critical transitions.

Box 5.2. Generic early-warning signals for rate-induced critical
transitions.

As systems approach critical thresholds, they become increasingly slow
in recovering from perturbations (Wissel, 1984; Scheffer et al., 2009).
This phenomenon, known as “critical slowing down”, is expected to
result in increasing variance and autocorrelation in systems that are
subject to natural variability. Figure 5.6 shows that these early-warning
signals also precede the rate-induced critical transition found for the
model of Equation 5.1. The increases in recovery time, autocorrelation
and variance are both predicted by the steady lag analysis (red curves)
and model runs (blue crosses), but can not be regarded as trivial since
flattening of the potential landscape associated with critical slowing down
(Scheffer et al., 2009) does not occur as the rate of change approaches its
critical value (see Figure 5.2b).
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Figure 5.6: Increasing recovery time from perturbations (a), lag-1 auto-correlation (b) and
variance (c) in state variable x of Equation 5.1 as the rate of change in paramter
a approaches a critical rate of change of da/dt = 2(= b). The crosses represent
the value of each statistic on detrented time series of x with a length of t = 2000.
State variable x was perturbed with Gaussian noise with a standard deviation of
σ = 0.1, which was applied with an interval of ∆t = 0.2. The curves are derived
by linearization around the steady lags. The half time is given by th = 1

λ
ln

(
1
2

)
,

with λ = −2
√
b− r (see Appendix 5.B), the auto-correlation is given by α = eλ∆t

and the variance by VAR= σ2

1−α2 .

5.6 Discussion and conclusions

Current anthropogenic environmental changes occur at unprecedented rates
(Joos and Spahni, 2008; Kaplan et al., 2011; Klein Goldewijk et al., 2011).
In this paper we presented and discussed models that suggest that, for some
ecosystems, rates of environmental change may be too high to cope with,
thereby triggering a new type of critical transition. These rate-induced critical
transitions are challenging to analyse in ecological models, but can be under-
stood in elementary models by applying graphical analyses or by studying
the lag behind a system’s stable steady state. These analyses revealed that
(i) rate-induced critical transitions occur if the rate of environmental change
is high compared to the response rate of ecosystems, (ii) rate-induced critical
transitions are similar to change-induced critical transitions but are driven by
rates, rather than magnitudes, of environmental change and (iii) rate-induced
critical transitions occur once a critical rate of change is exceeded. Identi-
fication of rate-sensitive ecosystems would also be challenging, but common
features of rate-sensitive models suggest that ecosystems with coupled fast-
slow dynamics, exhibiting repetitive catastrophic shifts or spatially periodic
patterns are more likely to display rate-induced critical transitions.

Although we have suggested a number of common features of rate sensitive
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models which may be useful in identification of rate sensitive ecosystems
(Section 5.5), disentangling change- and rate-induced critical transitions
in observations would still be challenging. Indeed, to our knowledge no
observations of rate-induced critical transitions in real ecosystems have been
reported. Rate dependent outcomes have however been reported in a number
of experimental studies. Rate dependency is a well known problem for
short-term experimental studies on the effect of the relatively gradual rise in
atmospheric CO2 on ecosystem structure and functioning (Luo and Reynolds,
1999; Klironomos et al., 2005; Luo and Hui, 2009). For example, Klironomos
et al. (2005) have found that increasing the CO2 concentrations instantly
from 350 to 550 ppm resulted in a significantly different soil mycorrhizal
community structure, whereas the same magnitude of change applied over
a period of about 6 years had no significant effect. There is no reason to
believe that such rate dependencies at the community level would have no
effects at the ecosystem level, meaning that these experiments do not rule
out the possibility of rate sensitivity of real ecosystems.

By using ordinary differential equations to model ecosystems, we implicitly
assumed that ecosystems can only respond to environmental changes by
adjusting the levels of their state variables. For example, consumers in the
model by Rosenzweig and MacArthur (1963, Box 5.1), only respond to the
declining resource density by lowering their own density. In real ecosys-
tems however, populations are known to adapt to environmental changes
in other ways too, namely by (i) evading to more suitable habitats or by
adapting in situ through (ii) phenotypic plasticity and/or through (iii) micro-
evolutionary adaptation (Holt, 1990). The rates of these three alternative
response mechanisms are bounded, potentially leading to additional critical
rates of environmental change. For example, Devictor et al. (2012) found that
butterfly and bird populations in Europe do not meet the required displace-
ment velocities to track shifting temperatures, and are building up what they
call a “climatic debt”. Also micro-evolutionary adaptation has a limited rate,
and theory suggests that critical rates of environmental change exist beyond
which selective pressures become too high for positive population growth to
be maintained (Lynch and Lande, 1993; Bürger and Lynch, 1995; Chevin
et al., 2010). In order to predict the effect of rapid environmental changes
on ecosystems, both the mechanisms behind rate-induced critical transitions
on ecosystem level and behind the alternative responses on population level
need to be understood.

The focus of steady-state analysis on long-term asymptotic behaviour
of ecosystems is sometimes inappropriate and does not always match with
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ecologically relevant time scales (Hastings, 2004; Hughes et al., 2013). Our
study shows that steady state analysis is also insufficient to study rate-
induced critical transitions. Steady state analysis has shaped the common
view on concepts like ecological resilience, as we have pointed out in Section
5.2. Definitions of resilience (e.g Holling, 1973) are based on the view that
ecosystems may shift to alternative dynamics when (external) change or
perturbations drive ecosystems beyond a critical threshold. Hence a critical
magnitudes of external change and disturbances can be regarded as measures
for resilience (Figure 5.1a). However, these definitions and measures do
not apply to rate sensitive ecosystems, which may or may not cope with
a magnitude of change depending on the time scale over which the change
occurs. This suggests that in some cases a broader definition of resilience
that acknowledges critical rates of change would be more applicable.

The idea of alternative stable states and critical thresholds in ecosystems
has motivated formulation of preconditions for human development on a global
scale referred to as “planetary boundaries” (Rockström et al., 2009; Steffen
et al., 2015; Scheffer, 2015). The proposed boundaries are however all critical
levels (e.g. atmospheric carbon dioxide concentration) or rates controlling
levels (e.g. the rate of phosphorous mining which controls phosphorous
concentrations in the oceans). Rate sensitivity found in models suggests
that, given the elevated rates of change in the environment that accompany
human development, defining boundaries based on critical levels may not
be enough to ensure a safe operating space. In order to define critical rates
of change on ecosystem level or even on a global level and to identify rate
sensitive systems, a better mechanistic understanding of rate-induced critical
transitions is needed.
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Appendix 5.A Steady states and potential diagrams
for Equation 5.1

In this appendix we study the steady states of Equation 5.1 and derive its
potential diagrams. The equation describes the change in state variable x
over time as function of itself and at parameters a and b:

dx

dt
= b− (x− a)2 (5.12)

The steady states (dxdt = 0) of this equation are given by x̄± = a ±
√
b.

In order for steady states to exist we require b ≥ 0. General equations for
perturbations are given by:

d(x+ x′)

dt
− dx
dt

=
[
b− (x+ x′ − a)2

]
−
[
b− (x− a)2

]
= 2(a−x)x′−x′2 ≈ λx′

(5.13)
with λ = 2(a− x). Filling in x̄± gives λ± = ∓2

√
b. This means that x̄+ is

stable and x̄− is unstable for b > 0. Notice that parameter a affects neither
the existence nor the stability of the steady states. The potential landscapes
of Figures 5.1b and 5.2b in the main text are given by:

p(x) = −
∫

(b− (x− a)2)dx = a2x− ax2 − bx+
1

3
x3 + C (5.14)

Appendix 5.B Stability analysis for Equation 5.8

In this appendix we study the stability of the steady states of Equation 5.8
in the main text which describes the lag of Equation 5.1 behind the stable
steady state as parameter a changes:

dξ

dt
= b− (

√
b+ ξ)2 − da

dt
(5.15)

Since this equation is autonomous for linearly changing a, say da/dt = r,
we can set dξ/dt to zero to obtain the steady states. This yields ξ̄± =
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±
√
b− r−

√
b. The stability of ξ̄± can be determined by adding perturbations.

d(ξ + ξ′)

dt
− dξ

dt
=

[
b− (

√
b+ ξ + ξ′)2 − r

]
−
[
b− (

√
b+ ξ)2 − r

]
= −2(

√
b+ ξ)ξ′ − ξ′2

≈ λξ′ (5.16)

with λ = −2(
√
b+ ξ). Filling in ξ̄± gives λ± = ∓2

√
b− r. This means that

ξ̄+ is stable and ξ̄− is unstable. If r is greater than b, then the system is not
able to track the stable steady state x̄+ of Equation 5.1 (see Figure 5.5b in
the main text), so a critical rate of change in a is given by r := rc = b.

Appendix 5.C Graphical analysis of the
Rosenzweig-MacArthur model

In this appendix we apply the graphical analysis presented in Section 5.4.1
to the model by Rosenzweig and MacArthur (1963, Box 1):

dR

dt
= rR

(
1− R

K

)
− aCR

R+Rh
(5.17)

dC

dt
= ε

(
eaCR

R+Rh
−mC

)
(5.18)

In order to apply the graphical analysis, the model needs to be reduced to
a model with one state variable, which can be accomplished by assuming
fast state variable R to be in equilibrium (quasi-steady state approximation).
This yields:

dC

dt
= ε

(
eaCR∗±
R∗± +Rh

−mC
)

(5.19)

with R∗±(C) = 1
2(K−Rh)±

√
1
4 (Rh +K)2 − aCKr−1 and R∗− being unstable.

The basin of attraction of the model described by Equation 5.1 was bordered
by an unstable steady state. For this model, in contrast, the basin of
attraction is bordered by the optimum in the resource isocline (Figure 5.3a;
Wieczorek et al., 2010):

Cb =
r (Rh +K)2

4aK
(5.20)
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and moves with a rate of:

dCb
dr

=
dCb
dr

dr

dt
=
Cb
r

dr

dt
(5.21)

Figure 5.7 shows that by graphically comparing Equations 5.19 and 5.21 a
critical rate of change in r can be found at dr/dt = −1.5× 10−3.

This result can be found analytically by deriving the maximum response
rate and comparing it with Equation 5.21. The maximum response rate of
the system is given by the decline rate in consumer density dC/dt on the
boundary of the basin of attraction Cb, which can be found by filling in
Equation 5.20 in Equation 5.19:

dC

dt
= εCb

(
ea(K −Rh)

K +Rh
−m

)
(5.22)

Equalizing equations 5.22 and 5.21 and solving for dr/dt gives the critical
rate of change in r:

dr

dt
= εr

(
ea(K −Rh)

K +Rh
−m

)
(5.23)
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Figure 5.7: Rate-induced overconsumption occurs in the model by Rosenzweig and MacArthur
(1963, Box 1) if the rate of basin boundary movement exceeds the maximum decline
rate of consumers. (a) Consumer dynamics dC

dt
under static external conditions when

assuming the resource density to be in equilibrium (Equation 5.19). For parameter
values see the caption of Figure 5.3 in Box 1 (r = 1.8 day−1).
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Appendix 5.D Steady lag analysis of the
Rosenzweig-MacArthur model

In this appendix we apply the steady lag analysis presented in Section 5.4.2
to the model by Rosenzweig and MacArthur (1963, Box 1):

dR

dt
= rR

(
1− R

K

)
− aCR

R+Rh
(5.24)

dC

dt
= ε

(
eaCR

R+Rh
−mC

)
(5.25)

For K < Rh

(
1 + 2m

ea−m

)
this model has one stable steady state (R̄, C̄) at

R̄ = mRh
ea−m and C̄ = r(1− R̄)(R̄+Rh). If r changes with a rate of dr/dt, the

actual system state (R,C) starts to lag behind the stable steady state. The
lag of the actual system state (ρ, γ) behind the stable steady state can be
described by:

dρ

dt
= r(R̄+ ρ)

(
1− R̄+ ρ

K

)
− a(C̄ + γ)(R̄+ ρ)

R̄+ ρ+Rh
− dR̄

dr

dr

dt
(5.26)

dγ

dt
= ε

(
ea(C̄ + γ)(R̄+ ρ)

R̄+ ρ+Rh
−m(C̄ + γ)

)
− dC̄

dr

dr

dt
(5.27)

The steady state of this system (or steady lag (ρ̄, γ̄)) can be obtained by
setting Equations 5.26 and 5.27 to zero. Figure 5.8, shows how the steady
lag depends on the rate of change in r. The steady lag loses its stability
at dr/dt = −1.5× 10−3. As discussed in the main text, this result may be
erroneous since Equations 5.26 and 5.27 are non-autonomous (i.e. depend on
r).
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Figure 5.8: Steady lag for the model by Rosenzweig and MacArthur (1963, Box 1) with decreasing r.
These figures were obtained by numerical continuation of Equations 5.26 and 5.27 using
Grind for Matlab version 2.00, developed by Egbert van Nes (Wageningen Univeristy,
NL).
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6.1 Ecosystems ”off the beaten track” and their
response to environmental change

The application of dynamical systems theory on ecological problems has
provided a major contribution to the development of theoretical ecology and
has led to key insights in the field of environmental sciences. Of particular
interest is the fact that dynamical ecological models suggest that environ-
mental change can trigger critical transitions in ecosystems. Through the
application of equilibrium analysis, the mechanisms driving critical transitions
from spatially uniform equilibrium states to alternative uniform equilibrium
states, to cyclic dynamics and to spatially periodic patterns can be studied
in detail (see Chapter 1). These transitions are well-understood because of
analytical tractability of uniform equilibrium states. Although frequently
assumed, many ecosystems do not reside in uniform equilibrium states. In
this dissertation I tried to understand the response of ecological models that
are “off the beaten track”, i.e. that are not in a uniform equilibrium state,
because of spatial patterning (Chapter 2), because of pulsed resource input
(Chapter 3), because of cyclic dynamics (Chapter 4) or because of rapid
external change (Chapter 5).

In Chapter 2 I showed that through advanced analyses it is possible to
assess the stability of spatially patterned states of ecological models, and
demonstrated that insights in pattern stability are key to understanding the
response of ecological models to environmental change. More specifically, I
showed that a family of patterned states can be stable for a given set of envir-
onmental conditions (i.e. multistability) and that patterned ecosystems may
respond gradually to environmental change, provided that the change occurs
slowly. However, ecosystems are more likely to respond in a discontinuous
way to rapid environmental change, meaning that patterned ecosystems may
shift to a uniform (degraded) state even when alternative stable patterned
states still exist. Continuous response of models to environmental change
is bordered by a well-defined “period-doubling instability”, which may be
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triggered by rapid change through a delayed transition. In real patterned
ecosystems, period doubling can be explained by the (in)ability of patches
to rearrange in response to environmental change, which may serve as an
indicator for resilience.

In Chapter 3 I studied how changes in the frequency and magnitude of
resource pulses could affect ecosystems with limited uptake capacity. More
specifically I studied effect of changes in the frequency and intensity of
rain events on arid ecosystems. By aggregating rain events I was able to
apply equilibrium analysis to show that projected changes towards a rainfall
regime with infrequent high intensity events may trigger a shift to a degraded
state without any vegetation. In spatially patterned arid ecosystems, the
same shift may be triggered by changes towards a rainfall regime with
frequent low intensity rain events. These results suggest that patterned arid
ecosystems are most resilient if rain events have an intermediate frequency
and intensity. Whether changes in rainfall patterns are harmful or beneficial
for arid ecosystems is therefore dependent on the current rainfall regime.

Cyclic dynamics of ecological models generally cannot be understood
through equilibrium analysis. However, in combination with separation of
timescales, it can explain the dynamics of ecosystems with processes at
multiple timescales, as I demonstrated in Chapter 4. With this approach
I was able to explain both the short-term and long-term dynamics of a
coastal dune ecological model, consisting of rapid repetitive shifts in water
availability and long periods in which the model is locked in a state without
vegetation. The stagnation of the short-term cyclic dynamics of the model
can be explained both by internal dynamics and by rapid external changes,
such as a sudden decline in precipitation. This approach enabled identifying
soil water repellency as a potential driver of vegetation dynamics in coastal
dune ecosystems.

In Chapter 5 I discussed and introduced models that suggest that elevated
rates of environmental change can trigger critical transitions in ecosystems,
even if the same magnitude of slow environmental change would not (Fig-
ure 6.1). Understanding the mechanisms behind such rate-induced critical
transitions is challenging, but analyses of an elementary model showed that
rate-induced critical transitions are likely to occur when the rate of environ-
mental change is high relative to the maximum response rate of ecosystems,
that they are similar to change-induced critical transitions but are driven
by rates, rather than magnitudes, of environmental change and that they
occur once a critical rate of environmental change is exceeded. Common
properties of rate sensitive ecological models suggest that ecosystems with
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(a) (b)

Figure 6.1: (a) When neglecting this traffic sign drivers may risk withnessing a critical transition
of their vehicle to an alternative (degraded) state when the magnitude of change in
the vehicle’s position exceeds 100 meters. (b) Findings presented in Chapter 5 suggest
that a critical transition may also occur when a critical rate, rather than magnitude,
of change is exceeded (e.g. 50 km/h).

coupled fast-slow dynamics, that exhibit repetitive catastrophic shifts or that
display spatially periodic patterns, may be prone to rate-induced critical
transitions.

The findings presented in this dissertation did not only lead to new insights
but also to open questions and new challenges that need to be addressed in
future research, as I will discuss in the following sections.

6.2 Patterned ecosystems: multistability, gradual
transitions and early-warning signals?

Stability analysis of spatially periodic patterned states in an arid ecosystem
model presented in Chapter 2 suggests multistability of patterned ecosystems.
Validating multistability with empirical data is challenging. An illustrative
example is the bistability of the savanna and forest biomes due to a fire
feedback, suggested by both simple (Beckage et al., 2009; Staver and Levin,
2012; Van Nes et al., 2014; Staal et al., 2015) and comprehensive models
(Higgins and Scheiter, 2012; Baudena et al., 2015) based on insights from
decades of experiments (Higgins et al., 2007) and supported by bimodality in
tree cover data (Hirota et al., 2011; Staver et al., 2011; Yin et al., 2014) but
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currently still subject of an active debate in which both data and mechanisms
are questioned (Hanan et al., 2014; Staver and Hansen, 2015; Veenendaal
et al., 2015; Staal and Flores, 2015).

Validating multistability of patterned ecosystems would be even more
challenging because the modelled stable patterned states make up a continu-
ous family (a Busse balloon), whereas stable uniform states are generally
separated by distinct unstable states. As a result, multimodality of data,
frequently used as an indicator for multistability of well-mixed systems, is
not expected to be found in the wavenumber data of patterned ecosystems.
The unimodal data that is expected to arise from multistability is however
also insufficient to validate multistability, because unimodality can as well
result from monostability, as illustrated by Figure 6.2. Hence, the modality
of wavenumber data would not provide the information needed to falsify or
verify multistability of patterned ecosystems.

Another approach that may be more successful involves comparing areal
images of a given region separated by a sufficiently long time interval. This
would enable studying the temporal dynamics of patterned ecosystems. The
model runs in Chapter 2 suggest that patterns do not adapt their wavenumber
as long as they are stable. However, when losing their stability, patterns
change their wavenumber to become stable again, i.e. to regain a position
in the Busse balloon. When comparing two images one would expect stable
patterns to show no significant changes in wavenumber, and unstable patterns
to undergo significant wavenumber adaptations. If a continuous family
of stable wavenumbers emerges, then this would indicate multistability.
Prerequisites are that wavenumber estimates are accurate enough to detect
wavenumber adaptations and that data is available of variables that can not
be assumed spatially uniform in the considered region and that are known to
affect the shape of the Busse balloon (i.e. slope in arid regions).

Finally, multistability of patterned ecosystems could be tested with planting
experiments (Figure 6.3). These experiments would involve planting patterns
with different wavenumbers and monitoring whether they persist over time.
If multiple patterns persist, this would suggest multistability. Alternatively,
one could manipulate existing patterns, as currently done in models (Bel
et al., 2012; Zelnik et al., 2013), to see whether patterns with wavenumbers,
other than the original wavenumber, are stable.

Besides multistability, the model analyses in Chapter 2 suggest that pat-
terned ecosystems can respond in a gradual way to environmental change,
instead of in an abrupt way as hypothesised by Rietkerk et al. (2004), provided
that the environmental changes are slow. If environmental changes indeed
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occur slow enough to enable gradual ecosystem response, one would expect
no lower limit in pattern wavenumber that can be attained by patterned
ecosystems. A study by Deblauwe et al. (2011) on vegetation patterns in
Sudan however, shows rather sharp lower wavenumber limits of about 5 cycles
per km for banded patterns and about 10 cycles per km for spotted patterns,
which would suggest that changes in rainfall in arid regions may be too rapid
to enable a gradual response. It is however possible that other mechanisms,
such as grazing, could cause a “Busse balloon lift-off” (Siero, 2016, p. 133),
meaning that the conditions under which low wavenumber patterns are stable
simply do not exist. Further research is required to test whether processes
like grazing are indeed able to cause a Busse balloon lift-off.

A recent extension of the analysis in Chapter 2 to two spatial dimensions,
revealed that environmental change could trigger the break-up of banded
patterns into dashed patterns (Siero et al., 2015). These dashed patterns
have first been observed and classified as such in arid ecosystems by Ambouta
(1997, “brousse en tirets”) and are hypothesized to be linked to declining
rainfall by Valentin et al. (1999). In models dashed patterns are formed by
a Turing-like instability in the direction parallel to the band. Since dashed
patterns form as the environment becomes harsher, they may be used as an
early-warning indicator for an upcoming transition to a uniform degraded
state (Siero et al., 2015). To validate this finding further empirical research
is required.

6.3 Towards (speed) limits for environmental change

Dynamical systems theory has shaped the common view on concepts like
resilience and stability. Current research efforts focus on identifying the archi-
tectural features in (eco)systems that are responsible for critical transitions
and on estimating their proximity to critical thresholds (Scheffer et al., 2012).
The current theoretical framework has even been extended and build upon to
establish preconditions for human development on a global scale (planetary
boundaries; Rockström et al., 2009; Steffen et al., 2015; Scheffer, 2015).

However, the findings presented in this dissertation suggest that one has
to acknowledge rapid environmental change and slow internal dynamics in
order to understand how and when ecosystems undergo critical transitions
and ultimately to formulate a save operating space for humanity. As these
aspects were previously not covered by theory, future research will have to
return to the drawing board by developing novel approaches that enable
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Figure 6.2: Multistability or a noisy signal of monostability? The solid line borders a Busse balloon
and would explain the observations, but a linear fit through the data, indicated by the
dashed line, would also explain the data. The data points in this figure are artificially
generated. The Busse balloon is for the extended Klausmeier model with sloped terrain
introduced in Chapter 2.

studying ecosystems subject to rapid external change and/or with slow
internal dynamics. In addition, processes on population level that may affect
the magnitudes and rates of change ecosystems can absorb before shifting to
alternative dynamics will need to be considered in dynamical models. Such a
new theoretical framework may eventually enable establishing (global) speed
limits for environmental change, which may be used to safeguard ecosystems
against degradation (Figure 6.1).

6.3.1 Advanced model analysis and long-term experiments

To obtain insights into the mechanisms behind observed ecosystem dynamics,
ecologists generally rely on two approaches. They can either develop of
statistical or dynamical models that explain the observed dynamics and/or
they can perform manipulative experiments. These approaches are especially
useful when studying how ecosystems respond to environmental change.

To get a detailed understanding of the behaviour of dynamical models,
equilibrium analysis can be applied. However, as discussed in Chapter 5,
the applicability of equilibrium analysis is limited to cases of slow external
changes relative to the rate of internal ecosystem dynamics (upper left corner
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6.3 Towards (speed) limits for environmental change

Figure 6.3: Vegetation patterns planted by the KKL-JNF in the northern Negev desert (Israel,
31◦17’ N, 34◦49’ E; c©2013 Google Earth. c©2013 DigitalGlobe). The dimensions of
the depicted area are 1× 1 km.
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Figure 6.4: Equilibrium analysis of dynamical models and short-term manipulative experiments
explain part of the observed ecosystem dynamics (overlapping regions), but may not
explain all observations.

of Figure 6.4). As a result, equilibrium analysis of dynamical models can be
expected to explain only part of the observed ecosystem dynamics (Hastings,
2004), possibly excluding phenomena like rate-induced critical transitions
(Chapter 5), ’locked’ ecosystem dynamics (Chapter 4) and slowly unfolding
catastrophic shifts (Hughes et al., 2013).

Another way to assess ecosystem response to environmental change is by
performing manipulative experiments, in which with different treatments,
one or more environmental variable(s) is/are altered. In these treatments, the
changes in environmental variables are often applied instantaneously, which
is known to be problematic when studying the effect of observed gradual
environmental changes (Luo and Reynolds, 1999; Luo, 2003; Klironomos et al.,
2005; Luo and Hui, 2009). Furthermore, short-term experiments on the effects
of environmental change are generally performed on species or ecosystems
that respond relatively quickly to the applied treatment. Therefore, such
short-term experiments can only provide explanations for part of the observed
ecosystem dynamics (upper right corner of Figure 6.4).

To get a better understanding of the complex ecosystem dynamics that
are observed, advanced (possibly partly numerical) analyses are required
that acknowledge the transient dynamics of ecological models (e.g. Perryman,
2015). In addition, longer-term manipulative experiments are needed to
study the effects of slow changes on ecosystems with slow internal dynamics.
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6.3.2 Acknowledging adaptations on population level

An implicit assumption behind most ecological models, including the ones
presented in this dissertation, is that ecosystems can only respond to environ-
mental change by adjusting the values of their state variables, e.g. through
changing population densities. However, on a population level also other
types of adaptation are active, potentially affecting ecosystem response to
environmental change. Populations may adapt in situ through phenotypic
plasticity and/or through micro-evolutionary adaptation, or may evade to
more suitable habitats (Holt, 1990).

The magnitudes and rates of environmental change that can be absorbed
through these population level adaptations are bounded. Adaptations through
phenotypic plasticity occur relatively fast (i.e. within one generation). How-
ever, plastic adaptations can only absorb limited magnitudes of change (e.g.
Kleijn et al., 2010). Micro-evolutionary adaptations can absorb high mag-
nitude changes, but generally occur at a very slow pace, meaning that critical
rates of environmental change exist beyond which selective pressures become
too high for positive population growth to be maintained (Lynch and Lande,
1993; Bürger and Lynch, 1995; Chevin et al., 2010; Gienapp et al., 2013).
The ability of populations to evade to more suitable habitats in response to
environmental change is limited by both the rate and magnitude of change
and depends on environmental gradients, geographical barriers and the max-
imum displacement rate of the species (Burrows et al., 2011, 2014; Devictor
et al., 2012; Sandel et al., 2011; Brooker et al., 2007; Schippers et al., 2011;
Cobben et al., 2011; Bertrand et al., 2011).

Integrating these potentially important adaptations on population level in
ecological models, e.g. using the adaptive dynamics framework, would give
access to a detailed understanding of the effects of rapid continuous change
on ecosystems.

6.4 Final remarks

In the first half of the 20th century, the science of ecology often operated
on the presumption that the presence and spatial distribution of species
(and ecosystems) is dictated by the abiotic environment (Von Humboldt,
1805; Watson, 1847; Wallace, 1976; Browne, 1983). However, over time
examples accumulated of species actively modulating flows of resources, and
thereby their local environment (i.e. ecosystem engineering; Jones et al.,
1994). More recently, research has shown how ecosystem engineering can be
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Figure 6.5: Slow change beyond a critical threshold value (black dot) can trigger critical trans-
itions in ecosystems. The theory presented in Chapter 5 suggests that rapid external
change can cause critical transitions even if the same magnitude of slow change would
not (solid line). Besides responses in population density, phenotypic plasticity and
micro-evoutionary adaptations may respectively absorb rapid low magnitude changes
(red dashed line) and slow high magnitude changes (blue dashed line). Notice that,
theoretically, the blue dashed line could also bend inwards (”evolutionary suicide”;
Haldane, 1932; Rankin and López-Sepulcre, 2005).

responsible for feedbacks that trigger critical transitions such as catastrophic
shifts and spatial pattern formation (Scheffer et al., 2001; Rietkerk et al.,
2004). The combination of these theoretical insights and quantitative studies
(e.g. planetary boundary studies; Rockström et al., 2009; Steffen et al., 2015;
Scheffer, 2015) or experiments (e.g. planting experiments as in the Negev
desert; Figure 6.3) may eventually prevent ecosystem degradation and enable
ecosystem regeneration.

However, over the course of this scientific progress, it has also become
increasingly clear that humans are currently modulating the global environ-
ment at unprecedented rates, involving changes in the major biogeochemical
cycles, land surface transformations and climate change. This dissertation
highlights that future research will also need to address the fact ecosystems
are continuously exposed to rapid anthropogenic change. I hope that the
findings I have presented will motivate future studies on this issue and that
the yielded insights will one day guide measures to safeguard ecosystems
against degradation.
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Kéfi, S., Eppinga, M. B., Ruiter, P. C., and Rietkerk, M. (2010). Bistabil-
ity and regular spatial patterns in arid ecosystems. Theoretical Ecology,
3(4):257–269.

166



Bibliography
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Summary

Globally, ecosystems are exposed to human-induced changes in the environ-
ment. Understanding the effect of these changes on ecosystems is of crucial
importance and is currently one of the main challenges in the field of en-
vironmental science. To gain insights into the effects of human-induced
environmental changes there is a strong need to develop methods and tools
that enable better understanding of ecosystem dynamics. Dynamical systems
theory is a field in mathematics that uses differential and difference equations
(i.e. dynamical models) to describe natural phenomena and it provides ways
to study the effect of (human-induced) environmental changes on ecosystems.

The application of dynamical systems theory on ecological problems has
led to a number of key insights in the field of environmental science. Of
particular interest is the fact that dynamical ecological models suggest that
environmental change can trigger critical transitions in ecosystems. A critical
transition is a shift of a system to a qualitatively different dynamical re-
gime. Critical transitions occur when conditions change beyond some critical
threshold and include discontinuous, hard to reverse shifts to alternative
stable regimes (catastrophic shifts), transitions from static to cyclic dynam-
ics and the formation of spatially periodic patterns out of uniform states.
Through equilibrium analysis the mechanisms behind these critical transitions
can be studied in detail by assuming that ecosystems are spatially uniform
and in equilibrium. However, although frequently assumed, ecosystems often
do not reside in a uniform equilibrium state.

This dissertation investigates the response of ecological models that are
“off the beaten track”, i.e. that are not in a uniform equilibrium state, because
of spatial patterning (Chapter 2), because of pulsed resource input (Chapter
3), because of cyclic dynamics (Chapter 4) or because of rapid environmental
change (Chapter 5).

In Chapter 2 I show that through advanced analysis it is possible to assess
the stability of spatially patterned states of ecological models, and demon-
strate that knowledge about pattern stability is key to understanding the
response of ecological models to environmental change. More specifically,
I show that a family of patterned states can be stable for a given set of
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environmental conditions (i.e. multistability) and that patterned ecosystems
may respond gradually to environmental change, provided that the change
occurs slowly. However, patterned ecosystems are more likely to respond in
a discontinuous way to rapid environmental change, meaning that patterned
ecosystems may shift to a uniform (degraded) state even when alternative
stable patterned states still exist. Gradual response of models to environ-
mental change is bordered by a well-defined “period-doubling instability”.
The period-doubling instability can be triggered by rapid change through
a delayed transition. In patterned ecosystems, period-doubling can be ex-
plained by the (in)ability of patches to rearrange themselves in response to
environmental change, which may serve as an indicator for resilience.

In Chapter 3 I study how changes in the frequency and magnitude of
resource pulses could affect ecosystems with limited uptake capacity. More
specifically I study the effect of projected changes in the frequency and
intensity of rain events on arid ecosystems. By aggregating rain events
I was able to apply equilibrium analysis to show that projected changes
towards a rainfall regime with infrequent high intensity events may trigger
a shift to a degraded state without any vegetation. In spatially patterned
arid ecosystems, the same shift may be triggered by changes towards a
rainfall regime with frequent low intensity rain events. These results suggest
that patterned arid ecosystems are most resilient if rain events have an
intermediate frequency and intensity. Whether changes in rainfall patterns
are harmful to or beneficial for arid ecosystems is therefore dependent on the
current rainfall regime.

Cyclic dynamics of ecological models generally cannot be understood
through equilibrium analysis. However, in combination with separation of
timescales, it can explain the dynamics of ecosystems with processes at
multiple timescales, as I demonstrate in Chapter 4. With this approach
I was able to explain both the short-term and long-term dynamics of a
coastal dune ecological model, consisting of rapid repetitive shifts in water
availability and long periods in which the model is locked in a state without
vegetation. The stagnation of the short-term cyclic dynamics of the model
can be explained both by internal dynamics and by rapid external changes,
such as a sudden decline in precipitation. This approach enabled identifying
soil water repellency as a potential driver of vegetation dynamics in coastal
dune ecosystems.

In Chapter 5 I discuss and introduce models that suggest that elevated rates
of environmental change can trigger critical transitions in ecosystems, even
if the same magnitude of slow environmental change would not. Studying
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the mechanisms behind such rate-induced critical transitions is challenging,
but analyses of an elementary model showed that rate-induced critical trans-
itions are likely to occur when the rate of environmental change is high
relative to the maximum response rate of ecosystems, that they are similar
to change-induced critical transitions but are driven by rates, rather than
magnitudes, of environmental change and that they occur once a critical rate
of environmental change is exceeded. Common properties of rate sensitive
ecological models suggest that ecosystems with coupled fast-slow dynamics,
that exhibit repetitive catastrophic shifts or that display spatially periodic
patterns, may be prone to rate-induced critical transitions.

This dissertation highlights that much of the ecosystem dynamics “off the
beaten track” is yet to be explored. Future studies on patterned ecosystems
should focus on validating multistability using areal imagery and manipulative
experiments, on identifying possible mechanisms and processes, aside from
rapid environmental change, that can cause non-gradual response of patterned
ecosystems to environmental change and on extending stability analysis of
patterned ecosystem models to two spatial dimensions. In addition, this
dissertation calls for advanced analyses of ecological models in combination
with long-term manipulative experiments in order to understand the response
of ecosystems to environmental change regardless the rate of external change
or the rate of internal dynamics. Furthermore, to formulate speed limits
to environmental change for ecosystems, the theory on rate-induced critical
transitions needs to be further developed and integrated with the established
theory on population level adaptations.
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Samenvatting

Wereldwijd worden ecosystemen blootgesteld aan door de mens veroorzaakte
veranderingen in het milieu. Het is belangrijk om het effect van deze mi-
lieuveranderingen op ecosystemen te begrijpen om toekomstige degradatie
van ecosystemen te kunnen voorkomen. Dit is een van de belangrijkste uit-
dagingen binnen de milieuwetenschappen. Om inzichten te verkrijgen in de
effecten van milieuveranderingen is het belangrijk om methoden en middelen
te vinden die ons in staat stellen ecosysteemdynamiek bestuderen. Dynami-
sche systeemtheorie is een onderzoeksgebied binnen de wiskunde en gebruikt
differentiaal- en differentievergelijkingen (ofwel dynamische modellen) om
natuurlijke fenomenen te beschrijven. Dynamische systeemtheorie kan ge-
bruikt worden om effecten van veranderingen in de omgeving op ecosystemen
te onderzoeken.

De toepassing van dynamische systeemtheorie op ecologische vraagstukken
heeft tot een aantal belangrijke inzichten geleid binnen de milieuwetenschap-
pen. Met name interessant is het feit dat dynamische ecologische modellen
suggereren dat milieuveranderingen kunnen leiden tot kritische overgangen.
Een kritische overgang is een verschuiving binnen een systeem naar een
kwalitatief anders dynamisch regime. Kritische overgangen vinden plaats
wanneer een kritische drempelwaarde wordt overschreden en omvatten dis-
continue en moeilijk te herstellen omslagen naar alternatieve stabiele regimes
(catastrofale omslagen), overgangen van statische naar cyclische dynamiek
en de vorming van ruimtelijk periodieke patronen uit uniforme toestanden.
De mechanismen achter deze kritische overgangen kunnen in detail worden
bestudeerd met behulp van evenwichtsanalyse. Hierbij moet worden aange-
nomen dat ecosystemen ruimtelijk uniform en in evenwicht zijn. Vaak zijn
echte ecosystemen echter niet uniform of in evenwicht.

In dit proefschrift wordt het effect van milieuveranderingen bestudeerd
met ecologische modellen die “buiten het gebaande pad” zijn getreden -
ofwel modellen die niet in een uniform evenwicht zijn - door ruimtelijke
patroonvorming (Hoofdstuk 2), door gepulseerde instroom van voedingsstof-
fen (Hoofdstuk 3), door cyclische dynamiek (Hoofdstuk 4) of door snelle
milieuveranderingen (Hoofdstuk 5).
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In Hoofdstuk 2 laat ik zien dat door middel van geavanceerde analyse het
mogelijk is om de stabiliteit van ruimtelijke patronen in ecologische modellen
te bepalen en demonstreer ik dat kennis over de stabiliteit van patronen
essentieel is om het effect van milieuverandering in ecologische modellen te
begrijpen. Ik laat zien dat een familie van patronen stabiel kan zijn voor een
gegeven set van milieuomstandigheden (multistabiliteit) en dat ecosystemen
met ruimtelijke patronen op een geleidelijke manier kunnen reageren op
milieuveranderingen als de veranderingen langzaam plaatsvinden. Echter,
ecosystemen met patronen reageren waarschijnlijk op een discontinue manier
op snelle veranderingen, wat betekent dat er een omslag plaatsvindt van
een toestand met patronen naar een uniforme (gedegradeerde) toestand. De
geleidelijke aanpassing van modellen op milieuveranderingen wordt begrensd
door een “periodeverdubbelingsinstabiliteit”, welke wordt overschreden als
milieuveranderingen snel plaatsvinden. Of periodeverdubbelingen kunnen
plaatsvinden lijkt af te hangen van de mobiliteit van (vegetatie-)clusters. De
mobiliteit van deze clusters zou kunnen worden gebruikt als een indicator
voor de veerkracht van ecosystemen.

In Hoofdstuk 3 onderzoek ik het effect van voorspelde veranderingen in
de frequentie en intensiteit van regenbuien op aride ecosystemen. Door het
cumulatieve effect van regenbuien te beschouwen kon ik een evenwichtsanalyse
toepassen waarmee ik laat zien dat de voorspelde veranderingen richting een
regenregime met infrequente en intense buien kunnen leiden tot een omslag
naar een gedegradeerde toestand zonder vegetatie. Veranderingen richting
frequentere maar minder intense buien kunnen echter tot eenzelfde omslag
leiden in aride ecosystemen met ruimtelijke vegetatiepatronen. Deze resul-
taten suggereren dat aride ecosystemen met ruimtelijke vegetatiepatronen
het meest veerkrachtig zijn in een regenregime met tussenliggende frequentie
en intensiteit. Dit betekent dat veranderingen in het regenregime zowel
schadelijk als gunstig kunnen zijn voor aride ecosystemen, afhankelijk van de
huidige frequentie en intensiteit van regenbuien.

Cyclische dynamiek in ecologische modellen kan over het algemeen niet
worden bestudeerd met evenwichtsanalyse. In Hoofdstuk 4 laat ik echter zien
dat evenwichtsanalyse kan worden toegepast wanneer processen binnen een
ecosysteem sterk verschillen in het tijdbestek waarover ze plaatsvinden, om-
dat hierdoor de snelle en de langzame dynamiek apart geanalyseerd kunnen
worden. Ik laat zien dat op deze manier zowel de korte- als langetermijndyna-
miek van een ecologisch kustduinmodel verklaard worden, bestaande uit zich
herhalende snelle omslagen in beschikbaar bodemwater en lange perioden
zonder vegetatie. De kortetermijn cyclische dynamiek in het model stagneert
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door interne mechanismen dan wel door snelle externe veranderingen, zoals
een plotselinge afname van de neerslag. De gedetailleerde analyse van dit
model maakte het mogelijk om waterafstotende bodems aan te wijzen als
potentiële veroorzaker van de vegetatiedynamiek in kustduinen.

In Hoofdstuk 5 worden modellen gepresenteerd die suggereren dat kritische
overgangen in ecosystemen kunnen worden veroorzaakt door snelle milieuver-
anderingen. De mechanismen die verantwoordelijk zijn voor deze “snelheid
gëınduceerde overgangen” zijn moeilijk te bestuderen, maar analyses van een
simpel model laten zien dat snelheid genduceerde overgangen plaatsvinden als
de snelheid van milieuveranderingen hoog is in vergelijking met de maximale
aanpassingssnelheid van ecosystemen en dat ze vergelijkbaar zijn met “veran-
dering gëınduceerde overgangen” maar plaatsvinden als een kritische snelheid
van verandering wordt overschreden. Snelheidsgevoelige ecologische modellen
suggereren dat snelheid gëınduceerde overgangen kunnen plaatsvinden in
ecosystemen met gekoppelde snelle en langzame dynamiek, in ecosystemen
waarin herhaaldelijk omslagen plaatsvinden en in ecosystemen met ruimtelijk
periodieke patronen.

Dit proefschrift benadrukt dat een groot deel van de ecosysteemdynamiek
“buiten de gebaande paden” nog tot onontgonnen terrein behoort. Toekomstig
onderzoek aan patronen in ecosystemen zou zich moeten richten op het vali-
deren van multistabiliteit met luchtfoto’s en manipulatieve experimenten, het
vinden van mechanismen en processen - naast snelle milieuveranderingen - die
verantwoordelijk kunnen zijn voor abrupte degradatie van deze ecosystemen
en het uitbreiden van stabiliteitsanalyse van patronen naar twee ruimtelijke
dimensies. Daarnaast zijn geavanceerde modelanalyses en langetermijnex-
perimenten nodig om het effect van milieuveranderingen op ecosystemen
te kunnen begrijpen, onafhankelijk van de snelheid van verandering en de
snelheid van de interne ecosysteemdynamiek. Daarnaast kunnen snelheidsli-
mieten voor milieuveranderingen worden bepaald als de theorie van snelheid
gëınduceerde overgangen wordt doorontwikkeld en wordt gëıntegreerd met
de theorie over aanpassingen op populatieniveau.
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