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A B S T R A C T

Spatially periodic patterns can be observed in a variety of ecosystems. Model studies revealed that

patterned ecosystems may respond in a nonlinear way to environmental change, meaning that gradual

changes result in rapid degradation. We analyze this response through stability analysis of patterned

states of an arid ecosystem model. This analysis goes one step further than the frequently applied Turing

analysis, which only considers stability of uniform states. We found that patterned arid ecosystems

systematically respond in two ways to changes in rainfall: (1) by changing vegetation patch biomass or

(2) by adapting pattern wavelength. Minor adaptations of pattern wavelength are constrained to

conditions of slow change within a high rainfall regime, and high levels of stochastic variation in biomass

(noise). Major changes in pattern wavelength occur under conditions of either low rainfall, rapid change

or low levels of noise. Such conditions facilitate strong interactions between vegetation patches, which

can trigger a sudden loss of half the patches or a transition to a degraded bare state. These results

highlight that ecosystem responses may critically depend on rates, rather than magnitudes, of

environmental change. Our study shows how models can increase our understanding of these dynamics,

provided that analyses go beyond the conventional Turing analysis.

� 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Spatially periodic patterning of sessile biota can be observed in a
variety of ecosystems including arid ecosystems (Macfadyen, 1950),
mussel beds (van de Koppel et al., 2005), boreal peatlands
(Malmström, 1923) and tropical peatlands (Baldwin and Hawker,
1915). Such spatially periodic patterns can typically not be explained
by underlying heterogeneity in the environment, which suggests
that they are self-organized. Self-organization into periodic patterns
is the result of positive feedbacks that act locally (short range
activation) in combination with distal negative feedbacks (long
range inhibition; Gierer and Meinhardt, 1972). This combination of
feedbacks is also referred to as scale-dependent feedbacks (Rietkerk
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and van de Koppel, 2008). In arid ecosystems, the combination of
locally reduced evaporation through shading and water uptake by
laterally extended roots is known to induce such scale-dependent
feedbacks (Gilad et al., 2004; Meron, 2012). Scale-dependent
feedbacks can also result from the fact that in arid ecosystems plants
tend to improve soil structure which allows more water to infiltrate
during rain events (Rietkerk et al., 2000; Thompson et al., 2010). This
results in increased water availability and increased plant growth,
meaning that locally a positive feedback loop is active. However,
water availability farther away is negatively affected by this
facilitative effect: surface water accumulates on bare soils during
intense rain events and moves towards vegetated areas due to a
gentle slope or due to infiltration differences on flat terrain
(Klausmeier, 1999; Rietkerk et al., 2002). In arid ecosystems, local
positive feedbacks are therefore linked to a flux of resource that
results in long range inhibition and consequently in pattern
formation. This type of scale-dependent feedback is referred to as
the resource-concentration mechanism (Rietkerk et al., 2004). The
positive feedbacks that are often involved in pattern formation
(Rietkerk and van de Koppel, 2008) are associated with nonlinear
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ecosystem response to environmental change (DeAngelis et al.,
1980; Rietkerk et al., 2004). This means that gradual changes in
environmental conditions may result in sudden significant losses in
productivity and in degradation of patterned ecosystems.

Reaction–(advection–)diffusion models have been developed to
understand the mechanisms responsible for pattern formation, to
study the conditions under which scale-dependent feedbacks are
strong enough for patterning to occur and to get more insight in the
possible nonlinear behavior of patterned ecosystems (e.g. Klaus-
meier, 1999; Von Hardenberg et al., 2001; Rietkerk et al., 2002;
Gilad et al., 2004). In these models, patterns typically arise from a
uniform system state that becomes unstable to heterogeneous
perturbations. This type of instability is referred to as Turing
instability (after A.M. Turing, 1912–1954; Turing, 1953) and is
thought to be involved in for example the formation of patterns on
animal coats (Meinhardt, 1982), on sea shells (Meinhardt, 1995)
and in chemical systems (Gray and Scott, 1984; Pearson, 1993).
Using linear stability analysis, it is possible to find the parameter
ranges for which a uniform system state is Turing unstable.

At present, Turing analysis is used as a relatively simple way to
study the environmental conditions under which one would
expect periodic patterns to be observed (e.g. Klausmeier, 1999;
HilleRisLambers et al., 2001; Meron et al., 2004; Gilad et al., 2004;
Kefi et al., 2008; Eppinga et al., 2009). However, since Turing
analysis only considers the stability of uniform system states, it
provides very little information about the behavior of ecosystems
that are in a patterned state. Therefore, previous studies have been
exploring this behavior using numerical approaches. These studies
revealed a number of interesting properties of patterned ecosys-
tems. Various model studies suggest that patterns can be expected
under conditions where uniform system states are still stable and
under conditions too harsh for uniform cover to be sustained (e.g.
Von Hardenberg et al., 2001; Rietkerk et al., 2002). These findings
imply that stable uniform and stable patterned states can coexist
for a range of environmental conditions (Rietkerk et al., 2004). The
coexistence of alternative stable ecosystem states can result in so-
called critical transitions (Scheffer, 2009) if environmental
conditions change, which are associated with sudden losses of
productivity and ecosystem degradation (Scheffer et al., 2001).
Numerical studies that looked in more detail to the dynamics of
patterned ecosystem states suggest that multiple stable patterned
states, with different wavelength or spatial configurations, can
coexist and that this can result in hysteresis and more gradual
ecosystem adaptation if environmental conditions change (Sher-
ratt and Lord, 2007; Bel et al., 2012).

Although studies with numerical approaches uncovered some
interesting characteristics of patterned ecosystems, recent studies
have been exploring whether the use of analytically based
methods provides more detailed insights (Van der Stelt et al.,
2013; Sherratt, 2013a). These approaches go one step further than
Turing analysis as they consider the stability of patterned rather
than uniform ecosystem states. By combining stability analysis on
patterned states with model runs, Sherratt (2013a) demonstrated
that hysteresis can be explained by the coexistence of multiple
stable states. His study also suggests that the rate at which
environmental conditions change may affect system response. This
is of particular importance as current human activities induce
anomalous rates of environmental change (e.g. Joos and Spahni,
2008). Although these results suggest that information about the
stability of patterned states is essential in understanding ecosys-
tem response to changing environmental conditions, the applica-
tion of stability analysis on patterned states in the field of ecology
has been limited so far and various ecologically relevant questions
remain to be answered (Van der Stelt, 2012, pp. 95–100).

One of the processes that are not well understood is the process
of pattern wavelength adaptation. Patterned ecosystems can
respond to environmental change by adapting pattern wavelength
and the study by Sherratt (2013a) showed that this process is
affected by the rate of environmental change. It is, however,
unknown why and how patterned ecosystems adapt and why this
depends on the rate of change. In this study we therefore aim to
provide a mechanistic understanding of how patterned ecosystems
respond to environmental change, considering both the magnitude
of change as well as the rate of change. By applying stability
analysis on patterned system states, we first show that the use of
Turing analysis can yield false negatives and false positives with
regard to predicting the existence of observable (i.e. stable)
patterns. Based on the mechanisms that are involved in pattern
destabilization, we then discuss possible types of pattern adapta-
tion. Using model runs, we demonstrate that knowledge about the
stability of patterned states is crucial in understanding the
response of ecosystems subject to environmental change and
show how the rate of change in environmental conditions and the
level of imposed spatio-temporal noise affect system response.
Finally, we propose that competition for resources between
patches of vegetation provides a possible ecological explanation
for the obtained results. In this study we use an extended version of
an arid ecosystem model by Klausmeier (1999) as introduced by
Van der Stelt et al. (2013), which we will discuss in the next
section.

2. Model description and analyses

2.1. Model description

The extended version of the Klausmeier model is a reaction–
advection–diffusion model in which the formation of spatial
vegetation patterns is the result of competition for surface water.
The model has two state variables that are functions of both time t

and space x (x 2 R): plant biomass n and surface water w. Notice
that we will consider only one spatial dimension (x), following Van
der Stelt et al. (2013) and Sherratt (2013a). The model is given by
Eqs. (1) and (2). We use a non-dimensional version the model in
order to reduce the number of parameters. For a dimensional
version of the model and the physical meaning of the parameters,
see Appendix A.

@w

@t
¼ a � w � wn2 þ v

@w

@x
þ e

@2
wg

@x2
(1)

@n

@t
¼ wn2 � mn þ @2

n

@x2
(2)

The change in surface water w (Eq. (1)) is controlled by rainfall
a, surface water losses (second term) and uptake by plants through
infiltration and transpiration (third term). As in the original model
by Klausmeier (1999), the movement of surface water due to
gradients in the terrain is captured with an advection term (fourth
term). We extended the model by adding diffusion of surface water
(fifth term). We did this for three reasons. First, the diffusion term
has a physical basis as it can be derived from the shallow water
equations (Gilad et al., 2004). Second, it allows us to capture the
movement of surface water induced by spatial differences in
infiltration rate (Rietkerk et al., 2002). Third, it enables us to
demonstrate that the type stability analysis we use to study the
system’s response to change can be applied to both reaction–
advection–diffusion and reaction–diffusion model (v 6¼ 0 and v ¼ 0
respectively).

The dynamics in plant biomass n (Eq. (2)) are determined by
plant growth which is linearly related to water uptake (first term)
and by plant mortality (second term). As in the original model,
plant dispersion is modeled with a diffusion term (third term).
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The non-dimensional version of the model has five parameters.
We chose parameter values that are valid for grass as reported by
Klausmeier (1999). Plant mortality was set to m = 0.45 and for flat
and sloped terrain v ¼ 0 and v ¼ 182:5 respectively. As we are
interested in the response of the system to changes in rainfall, we
use rainfall a as bifurcation parameter and let it vary between a = 0
to a = 3.5. For simplicity we chose g = 1. Van der Stelt et al. (2013)
showed that the value of g does not qualitatively affect the
structure of stability regions. Therefore the results presented in the
following sections are not expected to differ qualitatively for other
values of g. Finally, e was calibrated to obtain patterns in a realistic
rainfall range according to studies listed by Deblauwe et al. (2008),
which appeared to be for e = 500. For conversion of these
dimensionless parameters to dimensional parameters, see
Appendix A.

The extended Klausmeier model falls in the broader class of
reaction(–advection–)–diffusion models referred to as activator-
depleted substrate systems (Edelstein-Keshet, 1988) with vegeta-
tion being the activator and surface water being the substrate. In
addition, it shows strong similarities with other well studied
models, depending on parameter choice. Naturally, if e = 0 we
return to the original (one dimensional) Klausmeier model
(Klausmeier, 1999). With v ¼ 0 and g = 1 the model is equal to
the model studied by Kealy and Wollkind (2012) and the well
studied chemical model by Gray and Scott (1984). Finally, the
model has been studied by Van der Stelt et al. (2013) for constant
rainfall a.

It should be mentioned that apart from the model by
Klausmeier (1999) and derivations thereof (Van der Stelt et al.,
2013; Kealy and Wollkind, 2012) a large body of model studies
have been published that dedicate pattern formation in arid
ecosystems to a variety of mechanisms, including competition for
surface water (Dunkerley, 1997; HilleRisLambers et al., 2001;
Rietkerk et al., 2002), competition through soil water uptake by
roots (Von Hardenberg et al., 2001; Meron et al., 2004), a
combination of these mechanisms (Gilad et al., 2004) or plant–
plant interactions only (Lefever and Lejeune, 1997; Lejeune and
Tlidi, 1999; Lejeune et al., 1999, 2002). These models may be
suitable depending on system characteristics such as climate, soil
and plant properties and can be used to answer specific research
questions. However, here we limit our study to the analysis of the
more generic extended Klausmeier model as it captures pattern
formation in a relatively parsimonious way.

2.2. Analyses

In order to study the response of the system to changes in
rainfall a, knowledge is required about the rainfall ranges for which
stable spatially uniform and patterned states of Eqs. (1) and (2)
exist. We derived the existence of system states and assessed their
stability by performing linear stability analysis. This type of
analysis, together with the obtained stability regions in parameter
space, will be discussed in detail in the next section. The
boundaries of the stability regions were obtained by tracking
the marginally stable patterned system states (Doelman et al.,
2012; Sherratt, 2013b) using AUTO continuation software (AUTO-
07p; Doedel, 1981).

As the rainfall a changes stable states may lose their stability.
The stability regions, as obtained using stability analysis, provide
insight in when a system state destabilizes. However, the behavior
of the system after destabilization (e.g. re-stabilization) is a priori
unknown. To study this, we performed runs of the model with
linearly increasing and decreasing rainfall a. The model runs were
performed in MATLAB (version 2012a – 7.14.0.739; The Math-
Works, Inc.) using a vector of 1024 elements that represent a
domain with a size of 1000 (500 m). Periodic boundary conditions
were used to diminish boundary effects and to mimic an infinite
domain. We studied the response of the system under different
rates of change in a (da/dt = �10�7, �10�4 and �10�2). We added
spatially and temporally uncorrelated multiplicative uniformly
distributed noise to both components of the model every 1/4 year
(noise amplitude = 0, 5 � 10�5 % and 0.05%). The noise was added
to diminish numerical artifacts, such as the system residing in
unstable system states, and represents potential sources of noise
that are not captured by the deterministic equations.

The state of the system can be expressed in terms of pattern
wavenumber k (= (2p)/wavelength). To enable comparison be-
tween the model runs and the stability regions, we assessed the
wavenumber of the patterns as generated by the model by
applying discrete Fourier transformations. This is explained in
detail in Appendix B.

3. Stability of uniform and patterned states: from Turing
instability to the Busse balloon

In this section we discuss the stability of uniform and patterned
states of the extended Klausmeier model. In Section 3.1 we briefly
review well-known linear stability analysis (Turing analysis) as
applied to uniform system states. We then continue by discussing
the mathematically more challenging stability analysis of pat-
terned states in Section 3.2. Finally we compare the stability
regions obtained in both subsections and discuss the ecologically
relevant results in Section 3.3.

3.1. Existence and stability of uniform system states

Determining the stability of uniform steady states to uniform
perturbations is a fairly easy task: first one derives the steady
states of the system, and then one perturbs the steady states. The
stability of the system state is then defined by the sign of the
exponential growth rate of the perturbation: the maximum real
part of eigenvalues l. Solely negative real parts of eigenvalues
imply a (asymptotically) stable state, whereas a positive real part
means that the system state is unstable. A bifurcation occurs when
due to a parameter change the growth rate of a perturbation
maxð<ðlÞÞ becomes positive (here max() refers to the maximum of
a set values and <ðÞ takes the real part of a complex number). The
system is marginally stable at such an onset of instability. Marginal
stability marks the boundaries of stability regions in parameter
space.

Uniform system states can be derived by setting Eqs. (1) and (2)
to zero while neglecting advection and diffusion fluxes. The
extended Klausmeier model presented in the previous section has
three uniform steady states for a > 2m (see Appendix D.1 for a
derivation). Two of the steady states are vegetated (so n > 0), of
which one is stable to uniform perturbations for ecologically
relevant parameter values (m < 2) and one is unstable (see
Appendix D.2 for stability analysis). A stable bare desert state
(n ¼ 0) exists for all values of a. At a = aSN : =2m a saddle-node
bifurcation occurs. Here the vegetated states cease to exist,
meaning that for a < aSN only a stable bare state exists.

Perturbations in natural systems are generally heterogeneous.
To account for this in the stability analysis, spatially heterogeneous
perturbations can be added to the uniform states (Turing, 1953;
Edelstein-Keshet, 1988). Heterogeneous perturbations can be
represented as sinusoids with wavenumber k (= (2p)/wavelength)
of which the amplitude grows (or decays) with a rate of
maxð<ðlðkÞÞÞ.

When perturbing the stable uniformly vegetated state of the
extended Klausmeier model with such sinusoids (Appendix D.3),
a range of values for a can be found for which the state is Turing
unstable. Here the amplitude of a perturbing sinusoid grows
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over time (maxð<ðlðk; aÞÞÞ > 0). Whether this occurs does not
only depend on intrinsic model parameters, such as a, but also
on the wavenumber of the sinusoid k. The solid red line in
Fig. 1a and b borders the region in (a, k)-space for which the
uniformly vegetated state is Turing unstable. Assuming that the
amplitude of the imposed perturbations grow while their
wavenumber is preserved, one would expect patterns to exist
in this region. Therefore this can be seen as a Turing prediction

region. If rainfall decreases over time, patterns will form directly
after the Turing bifurcation T (or Turing–Hopf bifurcation TH if
v 6¼ 0; Van der Stelt et al., 2013) as here the uniform state
becomes unstable. These patterns will have a wavenumber close
to kT (or kTH): the wavenumber of the perturbation that
initializes the Turing bifurcation. Model runs show that when
randomly perturbing uniform states that are Turing unstable,
the system tends to evolve to a state with a pattern wavenumber
close to the wavenumber of the perturbation with the largest
growth rate, also referred to as most unstable mode (dashed red
line in Fig. 1a and b; Sherratt and Lord, 2007). As we will show in
Section 4 however, pattern wavenumber can strongly deviate
from the this wavenumber if environmental conditions change.
Fig. 1. Stability regions of the non-dimensional extended Klausmeier model (Eqs. (1) and

represents rainfall and k is the wavenumber of the patterned state. The black solid curve in

or Busse balloon (shaded area). A period doubling bifurcation occurs on the black dashed

speed s. The red solid line borders the Turing prediction region where perturbations of

Turing prediction region uniform states are marginally stable to spatial perturbations. On

(saddle-node bifurcation SN; a = aSN : =2 m). The wavenumber of the perturbation with th

which the uniformly vegetated state is Turing unstable is marked as the Turing bifurcatio

eigenvalues for perturbations of patterned states plotted against Floquet wavenumber n. 

the perturbed states are marked with crosses in (a). At a � 1.5521 a sideband bifurcation (

bifurcation (PD) occurs. Here maxð<ðlðnÞÞÞ at n = p � 3.14 becomes positive. (Online v
3.2. Existence and stability of patterned system states

So far we have discussed the stability of uniform system states.
The patterned states that arise from a Turing unstable uniform
state are, however, not necessarily stable themselves. Unlike
uniform steady states, it is generally not possible to find explicit
expressions for patterned states by hand. For this and subsequent
determination of stability we rely on numerics.

Patterns may exist in the form of so-called wavetrains:
vegetation bands that slowly migrate in uphill direction. In fact
for v ¼ 182:5 this is the case for all patterns. To deal with this a
comoving frame j = x � st is introduced. Here s is equal to the
migration speed: a pattern dependent property that is assumed
to be constant in space and time. This results in additional
advection terms in both equations. A pattern ðw p; n pÞ with
wavenumber k exists for rainfall a if and only if it is a solution to
the system

0 ¼ a � w p � w pn2
p þ ðv þ sÞ dw p

dj
þ e

d2wg
p

dj2
(3)
 (2)) in (a, k)-space for flat (a; v ¼ 0) and sloped terrain (b; v ¼ 182:5). In (a) and (b) a

dicates the location of the sideband instability and borders the stable pattern region

 line. The grey curves in (b) show the contours of constant uphill pattern migration

 the uniformly vegetated state grow in amplitude. On the right hand border of the

 the left hand border of this region the Turing unstable uniform state ceases to exist

e largest growth rate is indicated by the red dashed line. The highest rainfall value at

n point T (or Turing–Hopf bifurcation point TH if v 6¼ 0). (c) The maximum real part of

The perturbed patterned states have a wavenumber of k = 0.43009 (�kT). Notice that

SB) occurs. Here the curvature at n = 0 changes sign. At a � 1.4099 a period doubling

ersion in color.)
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0 ¼ w pn2
p � mn p þ s

dn p

dj
þ d2n p

dj2
(4)

on the domain [0, (2p/k)] with periodic boundary conditions. See
Appendix E.1 for a derivation of these equations. Notice that,
besides the parameters of the extended Klausmeier model (Eqs. (1)
and (2)), migration speed s and wavenumber k now appear as
additional parameters. Parameters s and k can be used to express
the state of the system.

Since the existence of unstable patterned states is not of
immediate interest we also require stability. To determine this we
need to linearize about ðw p; n pÞ leading to ordinary differential
equations with a dependency on w p and np (Appendix E.2). The
perturbations are no longer represented by sinusoidals. Instead
they are given by products of two functions: a sinusoidal ein (with
wavenumber n) and an a priori unknown periodic function with
the same wavenumber k as the pattern. The eigenvalues of the
corresponding perturbations are complex and depend on n.

Stable patterns exist in what is referred to as the Busse balloon (after
F.H. Busse; Busse, 1978): the region in (parameter,k)-space for which
at least one stable periodic solution exists (Van der Stelt et al., 2013). If
a patterned state is stable, it is said to be in the Busse balloon. Busse
balloons for the extended Klausmeier model are depicted in Fig. 1a,b
(bordered by the black solid line). Apart from the patterned states, a
stable uniform bare state (k = 0) exists for all rainfall values.

Stability regions are bordered by marginally stable solutions.
Therefore a Busse balloon can be constructed by finding marginally
stable solutions. If one marginally stable solution is known it is
possible to track marginal stability while changing a parameter
(with the use of continuation software (AUTO; Doedel, 1981). A
precise description of this procedure can be found in the article by
Rademacher et al. (2007). The Busse balloon is obtained by
plotting the wavenumbers k of the marginally stable solutions
against the changing parameter. In order to track marginal stability
we also need to know exactly how the eigenvalues obtain a
positive real part: what is the destabilization mechanism?

In Van der Stelt et al. (2013) it is rigorously proven through the
derivation of amplitude equations (Ginzburg–Landau analysis)
that stable patterns exist close to the Turing(–Hopf) bifurcation: it
is derived that the bifurcation is supercritical (for the scalings
considered). Close to the Turing(–Hopf) bifurcation the region in (a,
k)-space where stable patterns exist is bounded by a parabola of
marginally stable patterns (Van der Stelt et al., 2013). Also, the
destabilization mechanism is identified as being a sideband

instability or Eckhaus instability.
The sideband instability is characterized by a change in sign of

the curvature of the eigenvalues attached to the origin (n = 0), as
depicted in Fig. 1c. For marginally stable patterns, which separate
stable from unstable patterns, there is no curvature at n = 0. This
corresponds to a second derivative at n = 0 that equals zero. If, due
to changing rainfall, patterns lose their stability, perturbations
with n close (but unequal) to zero become able to destabilize
patterned states.

With the current parameter combination the sideband is the
dominant destabilization mechanism for the extended Klausmeier
model (Van der Stelt et al., 2013). Only for very small
wavenumbers k it is superseded by intertwining Hopf instabilities
(Doelman et al., 2012). In this case, onset of instability occurs away
from n = 0, but continuation with AUTO is still possible (Rade-
macher et al., 2007; Doelman et al., 2012).

The perturbations, which consist of products of ein and
functions with the same wavenumber as the pattern k, need not
be periodic, but can be for particular values of n. For example,
perturbations with n = 0 are periodic with pattern wavenumber k,
since e0 = 1. As shown in Fig. 1c, perturbations with wavenumber k
(n = 0) are not able to destabilize a patterned state: due to
translation symmetry the growth rates of these perturbations
remain zero. Perturbations with n = p are periodic with wave-
number k/2 since e

pi = �1. If perturbations with wavenumber k/2
(n = p) become able to destabilize a patterned state, a so-called
spatial period doubling bifurcation occurs. Growth of these
perturbations results in a halving of the pattern wavenumber.
Recall that the wavelength is inversely proportional to the
wavenumber, so the wavelength (spatial period) doubles. Accord-
ing to Fig. 1c, perturbations of this kind are the last to destabilize a
patterned state as rainfall a decreases, however they do attain the
largest growth rate soon after. The black dashed line in Fig. 1a and b
depicts the period doubling instability.

In summary, we discussed that the stability of patterned states
can be assessed by tracking marginal stability. To do this,
knowledge about the destabilization mechanisms is required.
For the extended Klausmeier model the sideband instability is the
dominant destabilization mechanism, meaning the curvature
(second derivative) of the curve of eigenvalues (Fig. 1c) can be
used to trace the boundary of the stable pattern region.

3.3. Ecological implications

We determined the stability of patterned ecosystem states and
discussed some important destabilization mechanisms, but what
ecologically relevant information can we extract from Fig. 1?

First, we observe that the Turing prediction region and the Busse
balloon only partly overlap. A large part of the patterns in the Turing
prediction region turn out to be unstable, and are therefore unlikely
to observed. Furthermore, stable patterns exist outside the Turing
prediction region for a < aSN and if v 6¼ 0, also for a > aSN. These
patterns cannot form directly from a Turing unstable uniform state.
Although stable patterns do no appear at rainfall values above the
Turing(–Hopf) bifurcation for the extended Klausmeier model, this
may be different for other models (e.g. Rietkerk et al., 2002). The
differences between the Turing prediction region and the Busse
balloon suggest that a relatively simple Turing analysis gives very
limited information about the parameter regimes for which one can
expect patterns to be observed.

Second, Fig. 1 shows that for a given rainfall value a range of
stable patterned states exists. Since the system has many stable
states, it can be considered multistable. The current state, in terms
of wavenumber k, consequently depends on history, meaning that
hysteresis can be expected.

Third, a pattern with a given wavenumber k is stable for a range
of a. This means that the same pattern wavenumber can in theory
be observed for a range of external conditions. Furthermore, if
external conditions change, one would expect the wavenumber of
a pattern to remain constant as long as it is stable, i.e. as long as the
external conditions remain within the range for which the pattern
is stable.

Fourth, the shape of the Busse balloon allows high wavenum-
bers to be stable only at high values of a. The opposite is true for
low wavenumbers. The presence of a slope affects the shape of the
Busse balloon. Pattern formation occurs at higher rainfall rates and
patterned states can sustain under more arid conditions on sloped
terrains. The absence of a slope allows high wavenumber patterns
to be stable, while the rainfall range for which stable low
wavenumber patterns exist is narrow. On sloped terrains in
contrast low wavenumber patterns can be expected to be observed
for a wide rainfall range.

Finally, we observe that the period doubling instability
approaches the boundary of the Busse balloon as rainfall a

decreases. Meaning that at low rainfall values, period doubling
takes place almost simultaneously with the destabilization of a
pattern. In addition, the boundary of the Busse balloon is steeper at
low rainfall values. This means that at low rainfall values an



Fig. 2. Plant density n in space for runs of the non-dimensional extended Klausmeier

model with v ¼ 0 (flat terrain), for da/dt = �10�4 (a) and da/dt = 10�4 (b). The former

run starts from the homogeneously vegetated steady state. The latter is initiated

with the patterned solution of the first at a = 0.45. Spatially and temporally

uncorrelated multiplicative uniformly distributed noise with an amplitude of

Fig. 3. See the caption of Fig. 2, but now v ¼ 182:5 (sloped terrain). The grey curves

show the contours of constant uphill pattern migration speed. (Online version in

color.)
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incremental decline in rainfall could result in desertification if the
system is close to the boundary of the Busse balloon.

4. System response to changing environmental conditions

The obtained information about the stability and destabiliza-
tion of patterned states is not enough to fully understand the
behavior of patterned ecosystems when subject to changing
environmental conditions. This is because the linearization we
implicitly apply only enables us to describe the behavior of the
system close to the steady state. Consequently, if the system is
pushed away from a steady state (during pattern destabilization) it
is a priori unknown to which state it will evolve (restabilization). In
this section we study the behavior of the system while gradually
changing the rainfall parameter and relate this behavior to the
findings presented in the previous section. First we describe
history dependence within the system resulting from multi-
stability in Section 4.1. In Section 4.2 we then study in more detail
the restabilization of the system and its dependence on the rate
with which rainfall changes and on the level of noise imposed on
the system. Finally, in Section 4.3 we propose an ecological
mechanism that controls system restabilization.

4.1. Bouncing through the Busse balloon

The non-dimensional extended Klausmeier model (Eqs. (1) and
(2)) was run with the rainfall a changing over time with a rate of da/
dt = �10�4. This rate of change corresponds to a change in annual
rainfall of about 0.1 mm year�1.

Fig. 2 shows how the system responds to changing rainfall on
flat terrain (v ¼ 0). When rainfall decreases, patterns in plant
biomass emerge shortly after the uniformly vegetated state
becomes Turing unstable (Fig. 2a). The mean plant biomass of
the patterned state does not differ much from that of the Turing
5� 10�5 % is added to the plant density every 1/4 year. The trajectories through the

Busse balloon in (c) were obtained by applying a discrete Fourier transformation with

respect to x (see Appendix B). In (d), the mean biomass is plotted for both runs. The

solid and dashed black lines are the uniform steady states. (Online version in color.)
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unstable uniform system state (Fig. 2d). The wavenumber of the
pattern does not change as long as the pattern is stable. The pattern
amplitude in contrast increases during pattern formation after
which it slowly decreases with declining a. At some point, the
decreasing rainfall forces the system outside the Busse balloon and
the pattern destabilizes (Fig. 2c). This results in a pattern with a
lower wavenumber and a larger amplitude. These transitions are
not distinguishable in mean biomass (Fig. 2d). The adaptation of
the wavenumber is accompanied by the extinction of what can be
considered as vegetation patches. When a reaches a value for
which no stable patterned state exists, desertification occurs and
all remaining patches go extinct simultaneously.
Fig. 4. Trajectories through the Busse balloon for runs with decreasing rainfall and with d

by applying a discrete Fourier transformation with respect to x (see Appendix B). The run

desert state k = 0. The solid line depicts the sideband instability SB, the dashed line is

extrapolated from the Busse balloon and depicts the area in which period doubling would

right the rate of change in rainfall jda/dtj changes from 10�7 to 10�4 to 10�2. On the lef

change of a fixed.
If rainfall increases over time similar behavior can be observed
(Fig. 2b), however now patterns destabilize at the lower border of
the Busse balloon and the wavenumber increases until eventually a
uniformly vegetated state is reached (Fig. 2c). During wavenumber
adaptation vegetation patches split up. Since the trajectories for
decreasing and increasing rainfall differ, hysteresis occurs
(Sherratt, 2013a).

On sloped terrain (Fig. 3), patterns emerge in the form of
vegetation bands that migrate in uphill direction (traveling waves).
As the Busse balloon is wider in terms of wavenumber k the
hysteresis effect is more pronounced when compared to flat terrain.
As shown in Fig. 3, the migration speed of the vegetation bands gets
ifferent rates of change in a and different noise levels. The trajectories were obtained

s were initiated with a stable pattern solution at k � kT and a = 1.6 and end in the

 the period doubling instability PD. The area bordered by the dotted curves was

 result in a stable patterned solution. The three runs on top have no noise, from left to

t the noise amplitude increases (0, 5� 10�5 % and 0.05%) while keeping the rate of



Fig. 5. Plant biomass n and water w against space x, for v ¼ 0 and da/dt = �10�4. The

black lines mark the position of water divides. The black arrows indicate the

direction of the movement of the water divides. The green arrows indicate the

growth or decay in n. (Online version in color.)
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lower as rainfall decreases. However, during wavenumber adapta-
tion vegetation bands accelerate leading to slightly elevated
migration speeds directly after transition.

Although wavenumber adaptation occurs some time after
patterned states destabilize, as discussed earlier by Sherratt
(2013a), Figs. 2 and 3 indicate that the Busse balloon helps in
understanding how patterned ecosystems respond to changes: (1)
as long as the system is in the Busse balloon it responds by
changing the amplitude (and migration speed) of the patterns and
(2) if, due to changing rainfall a, the system is forced outside the
Busse balloon it responds by changing its pattern wavenumber.

At first sight, the Busse balloon does not seem to provide insight
in what determines the selection of a new wavenumber after
pattern destabilization. In the next section we show how
wavenumber selection is affected by the rate at which the rainfall
changes and by the amount of spatio-temporal noise to which the
system is exposed.

4.2. Wavenumber selection: the role of rate of change and noise

The model was run for v ¼ 0 with different rates of change in
rainfall jda/dtj (with da/dt < 0) and different noise levels. As shown
in Fig. 4, wavenumber adaptation occurs with increasing step size
(in terms of wavenumber k) for increasing rates of change. At high
rates of change, desertification can take place at rainfall levels for
which stable patterned states still exist. For the level of noise
imposed on the system, the opposite is true: higher noise levels
result in smaller step size. At sufficiently high noise levels, patches
go extinct one-by-one and the system tends to closely follow the
boundary of the Busse balloon.

We observe that during some wavenumber adaptations period
doubling occurs, meaning that half of the vegetation patches go
extinct simultaneously (Yizhaq et al., 2005). The occurrence of
period doubling is related to the position of the system in (a, k)-
space at which the wavenumber adaptation is initiated, which is in
turn determined by rate of change and noise level. If wavenumber
adaptation takes place close to the boundary of the Busse balloon,
which is the case for low rates of change or high noise levels, period
doubling does not occur. If wavenumber adaptation is initiated
farther away from the boundary of the Busse balloon, period
doubling occurs, provided that the system surpassed the period
doubling instability PD and that period doubling results in a stable
patterned solution.

At low rainfall values we find that period doubling occurs more
frequently (even at high noise levels). Here the period doubling
instability PD approaches the sideband instability SB (boundary of
the Busse balloon). As a result the period doubling instability PD is
surpassed even at low rates of change.

4.3. Competition between and rearrangement of patches

In the previous subsections we showed that wavenumber
adaptation driven by changing environmental conditions can be a
discontinuous process: many patches can go extinct simulta-
neously if a pattern destabilizes. In addition, we found that rainfall,
the rate of change in rainfall and the level of noise on the system
affect the number of patches that go extinct. Here we provide an
interpretation of the observed system responses by taking a closer
look to what happens during wavenumber adaptation.

Fig. 5 shows plant biomass and surface water for part of
the modeled domain during one of the wavenumber adaptations
in a model run with declining rainfall. The figure shows that
the extinction of one vegetation patch results in growth of its
neighboring patches, which in turn negatively affects their
neighbors. This triggers a cascade, eventually resulting in
extinction of half of the patches.



Fig. 6. Plant density n in space x against rainfall a during different wavenumber adaptations in a model run with declining rainfall. Rearrangement of patches during a

transition only occurs at high rainfall values. At low rainfall patches do not rearrange promptly and period doubling or desertification occurs. (Online version in color.)
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The interaction between neighboring patches in the extended
Klausmeier model can be explained by the competition for water.
Vegetation patches harvest water from an area bordered by water
divides where dw/dx = 0. The uptake of water by patches that share
a water divide, which is controlled by patch biomass, determines
the position of the water divide. An increase in patch biomass with
respect to neighboring patches will widen the water harvesting
area of a patch. The opposite occurs if a patch is weaker than its
neighbors. Since the water harvesting area affects water availabil-
ity, it feeds back to patch biomass eventually resulting in growth or
extinction of a patch.

We observe (Fig. 6) that wavenumber adaptations during which
less than half of the vegetation patches goes extinct are
accompanied by rapid spatial rearrangement of patches, while
no movement of patches can be observed if half (period doubling)
or all patches go extinct (desertification). The movement of
neighboring patches during rearrangement seems to weaken the
feedbacks described above: if one patch goes extinct its
neighboring patches fill up the created space, thereby diminishing
the stress on remaining patches.

Patch rearrangement generally occurs if wavenumber adapta-
tion is initiated between the sideband instability and the period
doubling instability. At low rainfall values, the period doubling
instability approaches the sideband instability. At these rainfall
values rearrangement of patches becomes less likely, as pattern
destabilization almost coincides with the period doubling insta-
bility PD. High rates of change in rainfall also do not allow for patch
rearrangement. High noise levels in contrast can trigger wave-
number adaptation before the system crosses the period doubling
instability PD, resulting in patch rearrangement and one-by-one
extinction of vegetation patches.

5. Discussion and conclusions

In this study we showed that patterned ecosystems systemati-
cally respond in two ways to changing environmental conditions:
(1) by adjusting patch biomass (pattern amplitude) or (2) by
changing pattern wavelength (wavenumber). In the latter case
patches go extinct or split up and may rearrange. In arid
ecosystems, gradual wavelength adaptation is constrained to
conditions of high rainfall, slow changes in rainfall and high levels
of stochastic spatial variation in biomass (noise). The adaptation
process is less gradual under conditions of either low rainfall, rapid
change or low levels of noise. Such conditions do not allow
vegetation patches to rearrange, and facilitate the simultaneous
extinction of half the patches or even a transition to a degraded
state without any patches.

We found that an overview of stable patterned states, the Busse
balloon, is a powerful tool in understanding the response of
patterned ecosystems to changing environmental conditions. If a
system is in a stable patterned state (i.e. in the Busse balloon), a
pattern tends to solely adapt its amplitude, while if the system
leaves the Busse balloon, a pattern adapts its wavenumber. The
ability of patches to rearrange is determined by the period
doubling instability. Once the system surpasses this instability,
patches do not rearrange, leading to extinction of half or all the
patches.

Our findings suggest that the response of patterned ecosys-
tems to environmental change does not only depend on the
magnitude of change, but also on the rate with which conditions
change: patterned ecosystems may not be able to respond in a
gradual way to rapid environmental change. Similar behavior can
be observed in a number of non-spatial models (e.g. Scheffer et al.,
2008; Luke and Cox, 2011). Nonlinear response to rapid
environmental change may as well occur in more comprehensive
models that are used for policy making. This may imply that
merely setting targets for tolerable change may not be sufficient to
prevent ecosystem degradation and that to ensure gradual
ecosystem adaptation, identification of critical rates of change
is required as well.

Besides the rate of change in environmental conditions, the
level of noise to which the system is exposed seems to play an
essential role in ecosystem response. Our study shows that
relatively small amplitude noise brings heterogeneity in the
population of patches which leads to more gradual ecosystem
adaptation to environmental change. Larger amplitude noise, on
the other hand, is known to be a cause of critical transitions
(Horsthemke and Lefever, 2006).

Our findings are in agreement with a recent study by Deblauwe
et al. (2011) based on areal images of patterned vegetation in
Sudan. Like Deblauwe et al. (2011) we found that pattern
wavenumber declines with increasing aridity and that, when
compared to flat terrain, a wider range of pattern wavenumbers
can be found on sloped terrain. Although our stability analysis
suggest that low wavenumber patterns are stable (and thus can be
observed in theory), Deblauwe et al. (2011) did not find such
patterns. This might be explained by the fact that, at least for flat
terrain, low wavenumber patterns are stable only for a relatively
small rainfall range (Fig. 1a). A second explanation can be found in
the steepness of the boundary of the Busse balloon. Wavenumber
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adaptation forced by environmental changes generally results in
increased ecosystem resilience as it increases the distance to
critical thresholds (the boundary of the Busse balloon). However, if
the boundary of the Busse balloon is steep, as is the case for low
wavenumber patterns at low rainfall values (Fig. 1a), the system
remains close to the boundary of the Busse balloon meaning that
the increase in ecosystem resilience is relatively small. As a result
patterned arid ecosystems are relatively fragile in this parameter
region. Variations in seasonal and annual precipitation, to which all
arid ecosystems are exposed, can easily trigger desertification.
Consequently, low wavenumber patterns are less likely to be
observed.

By assessing the existence and stability of patterned system
states we went one step further than Turing analysis, frequently
applied in previous studies (e.g. Klausmeier, 1999; HilleRisLam-
bers et al., 2001; Meron et al., 2004; Gilad et al., 2004; Kefi et al.,
2008; Eppinga et al., 2009). In a wide range of ecosystems, scale-
dependent feedbacks are thought to involve local positive
feedbacks (Rietkerk and van de Koppel, 2008). Such local
positive feedbacks allow stable patterned states to exist under
conditions where uniform cover can no longer be sustained.
Analysis of patterns in these parameter regions is of importance
because of proximity to critical thresholds. Using conventional
Turing analysis, however, it is fundamentally impossible to do
so. The novel approach we presented in this paper is a promising
way forward in understanding the behavior of spatially explicit
ecosystem models under these conditions. The findings pre-
sented in this paper are in accordance with previous model
studies. Analysis of the original Klausmeier model by Sherratt
and Lord (2007) and Sherratt (2013a) already suggested the
existence of patterned states in parameter regions where Turing
unstable states are absent (see also Rietkerk et al., 2002) and
that hysteresis can occur in pattern wavenumber and migration
speed. In contrast to the study by Sherratt (2013a) we used
wavenumber as state variable instead of migration speed. In
practice, wavenumber is a property that is easier to assess than
migration speed (Couteron and Lejeune, 2001; Deblauwe et al.,
2012). In addition, migration speed cannot be used as state
variable if all patterns are stationary. This is the case on flat
terrain in the extended Klausmeier model, but on sloped terrain
patterns can be fixed as well (Thompson et al., 2008; Dunkerley,
2013). The existence of a multitude of stable patterned states has
been demonstrated in other models as well (Sherratt, 2013a; Bel
et al., 2012; Zelnik et al., 2013; Meron, 2012). In this paper we
showed that transitions between stable patterned states can be
forced by changing environmental conditions. Previous studies
show that such transitions can also be triggered by disturbances
in the form of the uniform biomass removal (Meron, 2012) or
patch removal (Zelnik et al., 2013) Although our findings seem
to be in line with observations (Deblauwe et al., 2011), most
findings remain to be tested using areal images and field data.
Empirical proof for a Busse balloon requires a constant pattern
wavelength to be observed for a range of environmental
conditions or, alternatively, a range of pattern wavelengths to
be observed for a fixed set of environmental conditions. It would
also be interesting to see if competition between neighboring
patches indeed occurs and how the competition strength
depends on environmental stress. If time series of areal images
are available, it may also be possible to observe hysteresis in
pattern wavelength.

To get more insight in the behavior of real ecosystems we
propose that future studies apply stability analysis on patterned
system states of other (more realistic) models. Constructing Busse
balloons for other models will allow to relate findings to
measurable parameters. Stability analysis of models in which
multiple pattern forming mechanisms are captured, such as the
model by Gilad et al. (2004), would allow studying how the
relative strength of these mechanisms affects the global behavior
of patterned ecosystems (Kinast et al., 2014). In addition, future
studies could consider two spatial dimensions as this may
qualitatively affect the model behavior described in this paper.
Accounting for more than one spatial dimension in stability
analysis is mathematically challenging, since more complex spatial
patterns can evolve (gaps, labyrinths and spots; Pearson, 1993;
Rietkerk et al., 2002) and more destabilization mechanisms may
potentially destabilize a patterned system state (Hoyle, 2006).
Finally, as soon as bare ground forms between patches, the
movement and stability of patches can be described by pulse
interaction (see (Doelman and Kaper, 2003; Sun et al., 2005), and
references therein). This may provide insight in the ecologically
relevant process of wavenumber adaptation forced by environ-
mental change.

The changes in climate projected for the coming decades
(Solomon et al., 2007) are likely to affect the functioning of
patterned ecosystems worldwide. We showed that in order to
understand the behavior of patterned ecosystems that are
subject to change, mathematical techniques are required that
go beyond conventional Turing analysis. By assessing the
stability of patterned ecosystem states and by studying
the relevant destabilization mechanisms we were able to
explain when and how arid ecosystems may adapt their
pattern wavelength. Identification of the Busse balloon, together
with the period doubling instability, provides a theoretical
framework for future theoretical and empirical studies. These
studies may provide enhanced insights in the response of other
ecological models to change, the response of real ecosystems to
change, and the ecological mechanisms responsible for this
response.
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Appendix A. A non-dimensional extended Klausmeier model

The extended Klausmeier model is given by Eqs. (A.1) and
(A.2). In Table A.1, the values of the parameters are listed for
both grass and trees, as estimated by Klausmeier (1999). The
parameter for surface water diffusion was calibrated to obtain
patterns in a realistic parameter range. A non-dimensional
version of the model (Eqs. (A.3) and (A.4)) is used throughout the
paper. Table A.2 shows how the dimensionless parameters can
be obtained.

@W

@T
¼ A � LW � RWN2 þ V

@W

@X
þ E

@2
WG

@X2
(A.1)

@N

@T
¼ RJWN2 � MN þ D

@2
N

@X2
(A.2)

@w

@t
¼ a � w � wn2 þ v

@w

@x
þ e

@2
wg

@x2
(A.3)

@n

@t
¼ wn2 � mn þ @2

n

@x2
(A.4)



Table A.1
Values and units for the variables and parameters of the extended Klausmeier

model (Eqs. (A.1) and (A.2)). Values adopted from Klausmeier (1999). E was

calibrated to obtain patterns in a realistic parameter range, according to (Deblauwe

et al., 2008).

Parameter/variable Value (grass) Value (tree) Unit

W kg m�2(=mm)

N kg m�2

X m

T year

A 0–950 0–950 kg m�2 year�1

(=mm year�1)

L 4 4 year�1

R 100 1.5 kg m�2 year�1 kg�2

(=mm year�1 kg�2)

V 0 or 365 0 or 365 m year�1

E 500 500 m2 year�1 mm1�G

G 1 1 –

J 0.003 0.002 kg kg�1

(=kg L�1)

M 1.8 0.18 year�1

D 1 1 m2 year�1

K. Siteur et al. / Ecological Complexity 20 (2014) 81–96 91
Appendix B. Wavenumber plotting by fast Fourier transform

In this appendix we explain how we compute the trajectories
through (parameter,k)-space, as depicted in the main text, by using
the discrete or fast Fourier transform.

In the model runs the plant biomass n(x) is represented by a
vector n(j), j = 1, 2, . . ., N, of N = 1024 elements and the spatial
domain size is L = 1000. The vector can be expressed as a linear
combination of vectors vlð jÞ ¼ eð j2pil=NÞ, where l = 0, 1, 2, . . .,
N � 1. The vl represent sinusoidals with wavenumber k = (2pl)/
L. The weight of vl in n can be computed by the discrete Fourier
transform

YðkÞ ¼
XN

j¼1

nð jÞvlð� jÞ: (B.1)

The absolute value of Y(k) is a measure of how much n

resembles a sinusoidal with wavenumber k. If a single Y(k) has a
large absolute value compared to all other Y (k 6¼ 0), then the state
is (nearly) periodic with wavenumber k.

The trajectories through (parameter,k)-space, as depicted in the
main text, were obtained by picking the wavenumber where jYj
attained its maximum, k = 0 excluded. The wavenumber is only
plotted when the maximum is relatively large, which suppresses
plotting during transient dynamics.

Fig. B.1 shows that during wavenumber adaptation the spread
in k increases. After wavenumber adaptation the spread decreases
Table A.2
Physical meaning and values for the variables and parameters of the non-

dimensional extended Klausmeier model (Eqs. (A.3) and (A.4))

Parameter/variable Physical

meaning

Value

(grass)

Value

(tree)

w WR1/2L�1/2J 0.015W 0.0012W

n NR1/2L�1/2 5N 0.61N

x XL1/2D�1/2 2X 2X

t TL 4T 4T

a AR1/2L�3/2J 0.00375A 0.0003062A

m ML�1 0.25M 0.25M

v VL�1/2D�1/2 0.5V 0.5V

e ED�1 E E

g G G G

Fig. B.1. Plant biomass n against space x before, during and after wavenumber

adaptation in the model run with declining rainfall of Fig. 2 and the Fourier

transform of the corresponding vectors. (Online version in color.)
slowly. As the pattern settles, the maximum wavenumber can still
change. As l is an integer, k can only attain certain values. Therefore
the settling of the pattern can result in small jumps in pattern
wavenumber.
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Appendix C. General equations for perturbations

We derive equations for perturbations of a general system state
in the extended Klausmeier model. These equations will be of use
in Appendix D.2, D.3 and E.2. For ease of the computations we
restrict to the linear diffusion case g = 1. Let ðw; nÞ be a system
state that is perturbed by ðw0; n0Þ. We obtain an expression for the
governing equations of the perturbation by the following
calculations:

@w0
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¼ @ðw þ w0Þ

@t
� @w

@t

¼ e
@2ðw þ w0Þ

@x2
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� e
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w

@x2
þv
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  !
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@x2
þv
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w þ w0n0

2

� @2
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@x2
þw0n2 þ n0ð2wn � mÞ

(C.2)

The final approximate equalities are equalities in a linear
approximation: for small perturbations ðw0; n0Þ the products w0n0

and n02 are negligible.
In an abstract formulation Eqs. (C.1) and (C.2) can be rewritten

as:

@
@t

w0

n0

� �
¼ A

w0

n0

� �
(C.3)

where the so-called spectrum, a generalization of the concept of
eigenvalues, of the differential operator

A ¼
e

@2

@x2
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�1 � n2 �2wn

n2 @2

@x2
þ2wn � m

0
BB@

1
CCA (C.4)

determines the stability of ðw; nÞ.

Appendix D. Analysis of the homogeneous steady states.

For completeness we will give a thorough analysis of the
homogeneous steady states of the extended Klausmeier model.
This also serves the purpose of showing how easily results can be
obtained by hand in this case, compared to the restricted
possibilities for the analysis of patterns in Appendix E. The results
of Sections D.1 and D.2 also hold for g = 2.

D.1. Existence of spatially homogeneous steady states

If w and n are spatially homogeneous, gradients in w and n are
absent, and the advection–diffusion terms of (1) and (2) vanish.
Since only a single type of derivative remains, the partial
differential equations become ordinary differential equations. The
steady uniform states can then be found by solving (D.1) and (D.2).

dw

dt
¼ a � w � wn2 ¼ 0 (D.1)

dn

dt
¼ wn2 � mn ¼ ðwn � mÞn ¼ 0 (D.2)

Clearly nB ¼ 0 solves (D.2) and consequently wB ¼ a. This is a
bare desert state, as plant biomass equals zero. Alternatively (D.2)
is solved if n ¼ m=w. Substituting this in (D.1) and multiplying
with �w we obtain the quadratic equation w2 � aw þ m2 ¼ 0. This
quadratic equation can be solved to obtain two solutions for w and
from n ¼ m=w the corresponding solution for n can be computed.
The outcome is given by:

wS ¼
2m2

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p (D.3)

nS ¼
a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p

2m
(D.4)

wN ¼
2m2

a þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p (D.5)

nN ¼
a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p

2m
(D.6)

Here the argument of the square root needs to be positive, so
these states only exist for a � 2m. Note that the two states coincide
at a = 2m, in fact here a so-called saddle-node bifurcation takes
place. Fig. D.1 shows all homogeneous steady states of the
(extended) Klausmeier model expressed in plant biomass n as
function of rainfall a. In the following subsection we will show that
ðwS; nSÞ has a stable and an unstable direction (saddle, unstable)
and ðwN; nNÞ either has two stable or unstable directions (node).
Note that we have covered all possible cases of (D.2) and thus no
other homogeneous steady states can exist. Moreover, all the steady
states are nonnegative. We will continue by studying their stability.

D.2. Stability of the homogeneous steady states against homogeneous

perturbations

By perturbing the steady states obtained in Appendix D, their
stability can be determined. If a perturbation grows over time, the
steady state is unstable. The steady state is stable, if all
perturbations decay. In this appendix, we show how linear
stability analysis can be used to assess the stability of uniform
system states to homogeneous perturbations. We will do this by
using the equations derived for perturbations in Appendix C.

Since the perturbations are assumed to be homogeneous (C.1)
and (C.2) simplify to:

@w0

@t
¼ �w0ð1 þ n2Þ � 2n0wn (D.7)

@n0

@t
¼ w0n2 þ n0ð2wn � mÞ (D.8)

This can be compactly written as:

dw0

dt
dn0

dt

0
BB@

1
CCA ¼ �1 � n2 �2wn

n2 2wn � m

� �
w0

n0

� �
(D.9)

where the matrix is readily identified as the Jacobian matrix J of the
reaction terms. As is well-known, the stability can be determined
by looking at the real parts of the eigenvalues of the Jacobian.



Fig. D.1. Homogeneous steady states of the (extended) Klausmeier model

expressed in plant biomass n as function of rainfall a for m = 0.45.

2 If there are only second order spatial derivatives present, assuming the form

cos(kx) or sin(kx) is equivalent.
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For the bare state plugging in nB ¼ 0 in the Jacobian matrix yields

J ¼ �1 0
0 �m

� �
(D.10)

The eigenvalues can now be read of from the diagonal (l1 = �1,
l2 = � m) so the bare state is always stable (for m > 0).

In case of the saddle-node states we recall that nw = m

(Appendix D.1). So the Jacobian matrix becomes

J ¼ �1 � n2
S;N �2m

n2
S;N m

  !
(D.11)

The eigenvalues can be computed directly by solving the
characteristic equation involving the determinant det:

detðJ � lIÞ ¼ det �1 � n2 � l �2m
n2 m � l

� �

¼ l2 þ lð1 þ n2 � mÞ � m þ mn2 ¼ 0 (D.12)

Solving this we obtain:

l� ¼ �1

2
ð1 þ n2 � mÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mð1 � n2Þ þ 1

4
ð1 þ n2 � mÞ

2
r

(D.13)

Which has the form:

l� ¼ a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b þ a2

q
(D.14)

For this general form it holds:

(D.15)

We first show that ðwS; nSÞ has both a stable and an unstable
direction (saddle, unstable), as was claimed in Appendix D.1. For
this it suffices to show that b ¼ mð1 � n2
S Þ > 0. Since a > 2m

(Appendix D.1)

wS ¼
2m2

a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p ¼ 2m2ða þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p

Þ
a2 � a2 þ 4m2

¼ a

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p

> m (D.16)

Now nS ¼ m
wS
< 1 so b > 0.

Second we show that ðwN; nNÞ is a node (i.e. is either stable or
unstable in both directions), as was claimed in Appendix D.1, but
we will not directly determine the stability. This is equivalent to
b ¼ mð1 � n2

NÞ < 0. Since a > 2m we have

nN ¼
a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p

2m
¼ a

2m
þ 1

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4m2
p

> 1 (D.17)

So indeed b < 0.
Finally the eigenvalues belonging to the node can have positive

(unstable) or negative (stable) real parts. Both eigenvalues are
negative if and only if a ¼ �ð1 þ n2

N � mÞ=2 < 0, this is automati-
cally satisfied if m < 1, so in particular if m = 0.45. For general m it
can be calculated that the stability boundary is given by pairs (m, a)
that satisfy:

a ¼ m2ffiffiffiffiffiffiffiffiffiffiffiffiffi
m � 1
p and m � 2 (D.18)

This boundary is plotted in Figs. D.2 and D.3.

D.3. Turing analysis of the steady states

In the full model the steady states are also subject to
heterogeneous perturbations. States that were thought of as being
stable against homogeneous perturbation may be unstable against
a wider class of perturbations. For simplicity we restrict to g = 1.

The usual approach is to assume that the spatial dependence of
the perturbation has the form of a sinusoid: we represent it by a
complex exponential eikx.2 This is convenient because d/dx(eikx)
= ikeikx and d2/dx2(eikx) = � k2eikx. Substituting

w0ðt; xÞ
n0ðt; xÞ

� �
¼ eikx w̃ðtÞ

ñðtÞ

� �
(D.19)

in (C.1) and (C.2) and deviding by eikx yields:

@w̃

@t
¼ �k2ew̃ þ ikvw̃ � w̃ð1 þ n2Þ � 2ñwn (D.20)

@ñ

@t
¼ �k2ñ þ w̃n2 þ ñð2wn � mÞ (D.21)

This can be written in a single matrix equation:

dw̃

dt
dñ

dt

0
B@

1
CA ¼ �k2e þ ikv � 1 � n2 �2wn

n2 �k2 þ 2wn � m

� �
w̃
ñ

� �
(D.22)

The justification of the assumption that the perturbation is
sinusoidal is given by the Fourier transform, which links the



Fig. D.4. The maximum real part of l for heterogeneous perturbations of (wN ; sN),

plotted as function of k, for different values of a and for v ¼ 0 (solid lines) and

v ¼ 182:5 (dotted lines), m = 0.45. The boundary of the Turing prediction region

depicted in Fig. 1 is located at the intersection points of the curves with the x-axis.

The maxima of the curves correspond to the most unstable wavenumber.

Fig. D.2. Region in parameter space where ðwN ; nNÞ is stable, unstable or does not

exist.
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spectrum of the operator A in the abstract formulation (C.3) to the
eigenvalues of the above matrix.

For the bare state nB ¼ 0, so the matrix simplifies to

�k2e þ ikv � 1 0
0 �k2 � m

� �
(D.23)

so l1 ¼ �k2e þ ikv � 1 and l2 = � k2 � m. Since the real parts
<ðl1Þ ¼ �k2e � 1 and <ðl2Þ ¼ �k2 � m both remain negative for
any k, the bare state is also stable against heterogeneous
perturbations. Because the saddle is already unstable against
homogeneous perturbations we focus our attention on the node.
Since wNnN ¼ m the matrix becomes

�k2e þ ikv � 1 � n2
N �2m

n2
N �k2 þ m

  !
; (D.24)
Fig. D.3. The maximum real part of l for the spatially uniform steady states plotted

against a. Perturbations are assumed to be spatially homogeneous and m = 0.45.
from which we can obtain the eigenvalues by solving the
dispersion relation:

det
�k2e þ ikv � 1 � n2

N � l �2m

n2
N �k2 þ m � l

  !
¼ 0 (D.25)

This again yields a quadratic equation in l, which can be solved
for l. The eigenvalues l are now not only a function of model
parameters, but also a function of wavenumber k. Fig. D.4 shows
solutions of (D.25) (which depends on a through nN) for several
values of a for m = 0.45. The curves pass through the real axis
between a = 4 and a = 2.5 in both the case v ¼ 0 and v ¼ 182:5, the
node becomes Turing unstable somewhere in between (precise
values are given in the caption of Fig. 1).

Appendix E. Analysis of patterns

In the previous appendix all of the analysis could be done by
hand. This is very much in contrast to the analysis of patterns. Here
we give some results that can be obtained analytically for the
extended Klausmeier model.

E.1. Existence of patterns

Here we derive that patterns are solutions of Eqs. (3) and (4).
These equations are solved numerically.

In general, patterned states may migrate uphill (if v 6¼ 0). We will
denote the migration speed (in the direction of increasing x) of these
so-called wavetrains by s. Allowing for s = 0, any pattern can be
written in the form ðwðt; xÞ; nðt; xÞÞ ¼ w pðx � stÞ; n pðx � stÞ

� �
¼

ðw pðjÞ; n pðjÞÞ, where w p and np are periodic functions describing
the wave profile and j = x � st is a comoving frame coordinate. By
using the chain rule, e.g.

@wðx; tÞ
@t

¼ dw pðjÞ
dj

@j
@t
¼ �s

dw p

dj
(E.1)

after substituting the forms in (1) and (2) we obtain
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0 ¼ a � w p � w pn2
p þ ðv þ sÞ dw p

dj
þ e

d2wg
p

dj2
(E.2)

0 ¼ w pn2
p � mn p þ s

dn p

dj
þ d2n p

dj2
(E.3)

which are the equations we set out to find.

E.2. Stability of patterns

We will study the stability of a pattern ðwðt; xÞ; nðt; xÞÞ in the
case g = 1, so the equations for the perturbation (C.1) and (C.2)
hold. We show these equations again, now with explicit
dependence on the coordinates:

@w0ðt; xÞ
@t

¼ e
@2

w0ðt; xÞ
@x2

þ v
@w0ðt; xÞ

@x
� w0ðt; xÞð1 þ nðt; xÞ2Þ

� 2n0ðt; xÞwðt; xÞnðt; xÞ (E.4)

@n0ðt; xÞ
@t

¼ @2
n0ðt; xÞ
@x2

þ w0ðt; xÞnðt; xÞ2

þ n0ðt; xÞ 2wðt; xÞnðt; xÞ � mð Þ (E.5)

Here w and n are not constant, which prevents us from applying
a sinusoidal substitution as in Turing analysis (Appendix D.3). As in
Appendix E.1 we write ðwðt; xÞ; nðt; xÞÞ ¼ ðw pðjÞ; n pðjÞÞ with
j = x � st. To make optimal use of this form we apply a change
of coordinates (t, x) 7! (t, j). Simultaneously we substitute
ðw0; n0Þ ¼ eltðw̃ðjÞ; ñðjÞÞ and after division by e

lt we obtain:

lw̃ ¼ e
d2w̃

dj2
þ ðv þ sÞ dw̃

dj
� w̃ð1 þ n2

pÞ � 2ñw pn p (E.6)

lñ ¼ d2ñ

dj2
þ s

dñ

dj
þ w̃n2

p þ ñð2w pn p � mÞ (E.7)

This is a system of two second order ordinary differential equations.
After defining q̃ ¼ dw̃=dj and r̃ ¼ dñ=dj it can be rewritten as a first
order system of four ordinary differential equations:

d

dj

w̃
q̃
ñ
r̃

0
BB@

1
CCA ¼

0 1 0 0
l þ 1 þ n2

p

e

�v � s

e

2w pn p

e
0

0 0 0 1
�n2

p 0 m � w pn p �s

0
BBB@

1
CCCA

w̃
q̃
ñ
r̃

0
BB@

1
CCA (E.8)

Since the matrix of coefficients is periodic, we are ready to use
Floquet theory. Through Floquet theory it is possible to express the
spectrum as the union of curves of eigenvalues of a related
problem. The spatial part of the perturbations that act as
eigenfunctions satisfy:

w̃ j þ 2p
k

; n
� �

¼ einw̃ðj; nÞ (E.9)

ñ j þ 2p
k

; n
� �

¼ einñðj; nÞ (E.10)

where k is now the pattern wavenumber and n 2 (� p, p]. Note
that 2p/k is the wavelength of the pattern. A corresponding curve
of eigenvalues was exhibited as a function of n in Fig. 1c, for
different values of a. Regarding the stability we will not go into
more details but note that the procedure for assessing stability is
explained further in Rademacher et al. (2007).

A special case is when n = p. Then ein = �1. It follows that
w̃ðj þ 4p=k; pÞ ¼ �w̃ðj þ 2p=k; pÞ ¼ w̃ðj; pÞ, and similarly for ñ,
so the perturbation has twice the wavelength of the pattern. When
the real part of the corresponding eigenvalue becomes positive, the
pattern can be destabilized by such a perturbation and the period
will be doubled (period doubling instability).

References

Baldwin, M., Hawker, H.W., 1915. Soil Survey of the Fort Lauderdale Area, Florida.
Field Operations of the Bureau of Soils. Tech. Rep. US Department of Agriculture.

Bel, G., Hagberg, A., Meron, E., 2012. Gradual regime shifts in spatially extended
ecosystems. Theor. Ecol. 5, 591–604.

Busse, F., 1978. Non-linear properties of thermal convection. Rep. Progr. Phys. 41,
1929–1967.

Couteron, P., Lejeune, O., 2001. Periodic spotted patterns in semi-arid vegetation
explained by a propagation–inhibition model. J. Ecol. 89, 616–628.

DeAngelis, D.L., Post, W.M., Travis, C.C., 1980. Positive Feedback in Natural Systems.
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.

Deblauwe, V., Barbier, N., Couteron, P., Lejeune, O., Bogaert, J., 2008. The global
biogeography of semi-arid periodic vegetation patterns. Glob. Ecol. Biogeogr.
17, 715–723.

Deblauwe, V., Couteron, P., Bogaert, J., Barbier, N., 2012. Determinants and dynamics
of banded vegetation pattern migration in arid climates. Ecol. Monogr. 82, 3–
21.

Deblauwe, V., Couteron, P., Lejeune, O., Bogaert, J., Barbier, N., 2011. Environmental
modulation of self-organized periodic vegetation patterns in Sudan. Ecography
34, 990–1001.

Doedel, E., 1981. AUTO: a program for the automatic bifurcation analysis of
autonomous systems. Congr. Numer. 30, 265–284.

Doelman, A., Kaper, T.J., 2003. Semistrong pulse interactions in a class of coupled
reaction–diffusion equations. SIAM J. Appl. Dyn. Syst. 2, 53–96.

Doelman, A., Rademacher, J.D., Van der Stelt, S., 2012. Hopf dances near the tips of
Busse balloons. Discret Contin. Dyn. Syst. Ser. S 5, 61–92.

Dunkerley, D., 1997. Banded vegetation: development under uniform rainfall from a
simple cellular automaton model. Plant Ecol. 129, 103–111.

Dunkerley, D.L., 2013. Vegetation mosaics of arid western new South Wales,
Australia: considerations of their origin and persistence. In: Mueller, E., Wain-
wright, J., Parsons, A., Turnbull, L. (Eds.), Patterns of Land Degradation in
Drylands: Understanding Self-Organised Ecogeomorphic Systems. Springer,
(Chapter 12), pp. 315–345.

Edelstein-Keshet, L., 1988. Mathematical Models in Biology. McGraw-Hill, New
York.

Eppinga, M.B., de Ruiter, P.C., Wassen, M.J., Rietkerk, M., 2009. Nutrients and
hydrology indicate the driving mechanisms of peatland surface patterning.
Am. Nat. 173, 803–818.

Gierer, A., Meinhardt, H., 1972. A theory of biological pattern formation. Kybernetik
12, 30–39.

Gilad, E., von Hardenberg, J., Provenzale, a., Shachak, M., Meron, E., 2004. Ecosystem
engineers: from pattern formation to habitat creation. Phys. Rev. Lett. 93, 1–4.

Gray, P., Scott, S., 1984. Autocatalytic reactions in the isothermal, continuous stirred
tank reactor. Chem. Eng. Sci. 39, 1087–1097.

HilleRisLambers, R., Rietkerk, M., Bosch, F.V.D., Prins, H.H.T., Kroon, H.D., 2001.
Vegetation pattern formation in semi-arid grazing systems. Ecology 82, 50–61.

Horsthemke, W., Lefever, R., 2006. Noise-induced Transitions. Theory and Applica-
tions in Physics, Chemistry, and Biology, 2nd ed. Springer-Verlag, Berlin,
Heidelberg, New York.

Hoyle, R., 2006. Pattern Formation: An Introduction to Methods. Cambridge Uni-
versity Press, Cambridge, UK.

Joos, F., Spahni, R., 2008. Rates of change in natural and anthropogenic radiative
forcing over the past 20,000 years. Proc. Natl. Acad. Sci. U. S. A. 105, 1425–1430.

Kealy, B.J., Wollkind, D.J., 2012. A nonlinear stability analysis of vegetative Turing
pattern formation for an interaction–diffusion plant–surface water model
system in an arid flat environment. Bull. Math. Biol. 74, 803–833.

Kefi, S., Rietkerk, M., Katul, G.G., 2008. Vegetation pattern shift as a result of rising
atmospheric CO2 in arid ecosystems. Theor. Popul. Biol. 74, 332–344.

Kinast, S., Zelnik, Y.R., Bel, G., Meron, E., 2014. Interplay between Turing mecha-
nisms can increase pattern diversity. Phys. Rev. Lett. 112, 078701.

Klausmeier, C.A., 1999. Regular and irregular patterns in semiarid vegetation.
Science (New York, NY) 284, 1826–1828.

Lefever, R., Lejeune, O., 1997. On the origin of tiger bush. Bull. Math. Biol. 59, 263–294.
Lejeune, O., Couteron, P., Lefever, R., 1999. Short range co-operativity competing

with long range inhibition explains vegetation patterns. Acta Oecol. 20, 171–
183.

Lejeune, O., Tlidi, M., 1999. A model for the explanation of vegetation stripes (tiger
bush). J. Veg. Sci. 10, 201–208.

Lejeune, O., Tlidi, M., Couteron, P., 2002. Localized vegetation patches: a self-
organized response to resource scarcity. Phys. Rev. E 66, 010901.

Luke, C.M., Cox, P.M., 2011. Soil carbon and climate change: from the Jenkinson
effect to the compost-bomb instability. Eur. J. Soil Sci. 62, 5–12.

Macfadyen, W., 1950. Vegetation patterns in the semi-desert plains of British
Somaliland. Geogr. J. 116, 199–211.
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