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Theory suggests that gradual environmental change may erode the resilience of ecosystems and increase their susceptibility 
to critical transitions. This notion has received a lot of attention in ecology in recent decades. An important question 
receiving far less attention is whether ecosystems can cope with the rapid environmental changes currently imposed. The 
importance of this question was recently highlighted by model studies showing that elevated rates of change may trigger 
critical transitions, whereas slow environmental change would not. This paper aims to provide a mechanistic understanding 
of these rate-induced critical transitions to facilitate identification of rate sensitive ecosystems. Analysis of rate sensitive 
ecological models is challenging, but we demonstrate how rate-induced transitions in an elementary model can still be 
understood. Our analyses reveal that rate-induced transitions 1) occur if the rate of environmental change is high compared 
to the response rate of ecosystems, 2) are driven by rates, rather than magnitudes, of change and 3) occur once a critical 
rate of change is exceeded. Disentangling rate-induced transitions from classical transitions in observations would be 
challenging. However, common features of rate-sensitive models suggest that ecosystems with coupled fast–slow dynamics, 
exhibiting repetitive catastrophic shifts or displaying periodic spatial patterns are more likely to be rate sensitive. Our 
findings are supported by experimental studies showing rate-dependent outcomes. Rate sensitivity of models suggests that 
the common definition of ecological resilience is not suitable for a subset of real ecosystems and that formulating limits to 
magnitudes of change may not always safeguard against ecosystem degradation.

Theoretical studies have suggested that gradual changes 
in environmental conditions may trigger so-called critical 
transitions in ecosystems, which would explain unexpected 
ecosystem degradation and the sudden emergence of cyclic 
or chaotic dynamics (Holling 1973, Scheffer et al. 2001, 
Scheffer 2009). These studies found that gradual exter-
nal change can undermine the resilience of ecosystems, 
thereby increasing their susceptibility to critical transitions. 
The resilience of ecosystems can be assessed with ecological 
models through steady state analysis. Steady state analysis 
allows determining critical magnitudes of change in exter-
nal conditions and critical levels of disturbance beyond 
which ecosystems shift to alternative dynamics. The assump-
tion behind steady state analysis is that an ecosystem is in 
a state in which all processes balance out and no change 
can be observed (i.e. in dynamic equilibrium). Although 

the assumption that ecosystems reside in such a steady state 
has been useful in assessing their resilience under static or 
slowly changing environmental conditions, it does not hold 
when changes in environmental conditions are rapid relative 
to the attractive capacity of a steady state. The fact rapid 
environmental changes may lead to unexpected ecosystem 
dynamics has received only little attention in the ecological 
community (Scheffer et al. 2008). This is remarkable as 
the environmental changes in the Anthropocene occur at 
unprecedented rates (Joos and Spahni 2008, Kaplan et al. 
2011, Klein Goldewijk et al. 2011) and may be too rapid 
for ecosystems to cope with (Walther et al. 2002). In this 
study, we show that models indeed suggest that some 
ecosystems may fail to respond to rapidly changing external 
conditions, which can lead to a novel type of critical tran-
sition. We identify mechanisms driving such rate-induced 
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Understanding and predicting ecosystem response to environmental change is one of the key challenges in ecol-
ogy. Model studies have suggested that slow, gradual environmental change beyond some critical threshold can 
trigger so-called critical transitions and abrupt ecosystem degradation. An important question remains however 
whether ecosystems can cope with the ongoing rapid anthropogenic environmental changes to which they are 
currently imposed. In this study we demonstrate that in some ecological models elevated rates of change can 
trigger critical transitions even if slow environmental change of the same magnitude would not. Such rate-
induced critical transitions in models suggest that concepts like resilience and planetary boundaries may not 
always be sufficient to explain and prevent ecosystem degradation.
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critical transitions, provide possible ways forward regard-
ing identification of rate sensitive ecosystems and discuss 
the implications of rate-induced critical transitions for the 
general view on ecological resilience.

Critical transitions, steady state analysis and resilience

A critical transition is a shift of a system to a qualitatively 
different dynamical regime triggered by changing external 
conditions or by a disturbance. Critical transitions can 
be super- or subcritical. Supercritical transitions are con-
tinuous and reversible whereas subcritical transitions are 
discontinuous and require disproportional efforts to reverse. 
Subcritical transitions that occur between steady ecosys-
tem states are also referred to as catastrophic shifts (Scheffer 
et al. 2001). Well-known examples of catastrophic shifts are 
transitions of shallow lakes from clear to turbid states, trig-
gered by increases in nutrient input (Scheffer et al. 1993), 
of grazing systems from vegetated to (bare) overgrazed states 
forced by an increase in herbivore density (Noy-Meir 1975, 
May 1977, Rietkerk et al. 1996, 1997) and of marine ecosys-
tems driven by (combinations of ) sea temperature rise, over-
fishing, habitat loss, invasive species and pollutants (Jackson 
et al. 2001, Petraitis 2013). The alternative dynamics to 
which a system transitions do not necessary have to be steady 
over time. Increases in primary production through nutrient 
enrichment, for example, are known to lead to cyclic dynam-
ics between predators and preys (Huffaker et al. 1963, Rosen-
zweig 1971). In addition to these predator–prey cycles more 
discrete repetitive catastrophic shifts can occur in ecosystems 
with coupled fast–slow dynamics (Rinaldi and Scheffer 2000). 
Examples of such ecosystems are the spruce–budworm eco-
system, in which the recovery of trees from defoliation occurs 
at a much slower rate than the budworm outbreaks (Ludwig 
et al. 1978, Holling 1988) and coastal dune ecosystems in 
which repetitive shifts between wet and dry soils are thought 
to occur due to soil water repellency, thereby controlling the 
much slower vegetation dynamics (Siteur et al. 2016).

Besides cyclic and static dynamics, ecosystems may 
transition to apparently random dynamics when environ-
mental conditions change. Such chaotic dynamics are solely 
caused by deterministic processes and can even occur if the 
mechanisms controlling the system are very simple and are 
ought to result in trivial behaviour (May 1976, Tilman and 
Wedin 1991). In addition to transitions towards alterna-
tive temporal dynamics, spatially extended ecosystems can 
change their spatial structure in response to environmental 
changes. In arid ecosystems for example, declining rainfall 
may trigger the formation of spatially periodic patterns in 
vegetation (Klausmeier 1999, Valentin et al. 1999, Von 
Hardenberg et al. 2001, Rietkerk et al. 2002).

The notion that environmental change may trigger 
non-linear ecosystem response can largely be attributed to 
modelling efforts in the second part of the 20th century. 
In the field of mathematics, the description of natural 
phenomena using difference and differential equations is 
referred to as dynamical systems theory, which was intro-
duced by Sir Isaac Newton back in the 17th century to lie 
the foundations of what is now known as classical mechan-
ics (Newton 1687) and which was later further developed 
by Henri Poincaré (Poincaré and Magini 1899). Although 

the term ecosystem had already been coined in the 1930s 
(Tansley 1935, Willis 1997) and population models had 
been used well before that (Pisano 1202, Verhulst 1838, 
Volterra 1928), the dynamical systems approach only got 
widely applied in ecology in the 1970s (Rosenzweig 1971, 
Noy-Meir 1975, May 1977).

The application of the dynamical systems approach to 
ecology was aided by graphical approaches that enabled 
analysis of ecological models (Rosenzweig and MacArthur 
1963). However, the rapid development of theoretical ecology 
was also closely related to advancements in the mathemati-
cal field of bifurcation theory, or more specifically catastrophe 
theory. Catastrophe theory, from which the term catastrophic 
shift is derived, was introduced by René Thom (Thom 1975) 
and further developed by Christopher Zeeman (Zeeman 
1976, Zeeman and Barrett 1979). It applies topology to 
families of fixed points (or steady states/equilibria) to obtain 
a set of elementary phenomenological models that show how\
say ”continuous causes can give rise to discontinuous effects” 
(Zeeman 1982). One of the elementary models describes 
the so-called fold catastrophe. Equation 1 is one way this 
elementary model can be formulated (modified from Ashwin 
et al. 2012) and describes the dynamics of state variable x as 
function of itself and two parameters a and b:

dx
dt

b x a= − −( )2  (1)

Figure 1a shows that a gradual decline in parameter b initially 
results in a minor response of state variable x. However, if 
parameter b decreases beyond a critical threshold value then 
a catastrophic shift occurs.

This behaviour, as well as that of many ecological models, 
can very well be understood by applying a steady state approxi-
mation. As noted above, this approximation enables the deri-
vation of steady states (i.e. dynamic equilibria). Over time, 
the actual state of a system will move to a steady state if it is 
stable, and will move away from it when unstable. If a stable 
steady state only attracts within a certain ”basin of attraction” 
(Lewontin 1969), it is said to be locally stable (as opposed to 
globally stable). The proximity of the system state to the bound-
aries of the basin of attraction and the change in parameters 
required to pass critical thresholds (i.e. the persistence of the 
basin of attraction) determines the resilience of an ecosystem. 
Thus, ecological resilience can be defined as a measure of the 
ability of ecosystems to absorb changes of state variables, driv-
ing variables, and parameters, and still persist (Holling1973).

Figure 1 shows that, as parameter b declines, the system 
closely follows a stable steady state (Fig. 1a) until the basin 
of attraction vanishes (Fig. 1b). Steady state analysis allows 
deriving the critical threshold value of b at which the 
basin of attraction vanishes, as well as the boundary of the 
basin of attraction, here given by the unstable steady state 
(Supplementary material Appendix A). Given the external 
conditions and the state of the system, this allows deriving the 
critical magnitude of change in b and the critical perturbation 
size in terms of x, beyond which the system shifts to alterna-
tive dynamics as depicted in Fig. 1a. These properties directly 
relate to the definition of ecological resilience (Holling 1973). 
The susceptibility of ecosystems to the types of critical transi-
tions described so far can thus be assessed and understood 
through steady state analysis of ecological models.
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Rate-induced critical transitions

As illustrated in Fig. 1b, steady state analysis can often properly 
explain the complex dynamics exhibited by ecological models. 
However, one can question the validity of the steady state 
assumption if external conditions change more rapidly. From 
a mathematical perspective, models with explicit time depen-
dency of one of the parameters (also referred to as non-autono-
mous, open or ramped systems; Wieczorek et al. 2010, Ashwin 
et al. 2012) do generally not have steady states. In analysis of 
ecological models it is therefore often implicitly assumed that 
external conditions change slowly compared to the attrac-
tive capacity of an ecosystem’s stable steady state, such that it 
approximates the actual system state. While this may be true 
for ecosystems that are relatively isolated from human activities, 
the currently observed rates of anthropogenic environmental 
change could be much higher than the rate at which ecosystems 
can respond to these changes (Walther et al. 2002). This could 
result in dynamics that differ from the dynamics predicted by 
steady state analyses and may even trigger unexpected critical 
transitions. This would have consequences, not only for the 
validity of currently applied model analyses, but also for our 
view on ecological resilience (e.g. as defined by Holling 1973).

Runs of the model described by Eq. 1 suggest that if exter-
nal conditions change rapidly, the actual system state can 
indeed strongly deviate from the stable steady state, as shown 
in Fig. 2a. For relatively slow external changes, now simulated 
by increasing the value of parameter a, the actual system state 
simply lags behind the stable steady state. However, above 
some critical rate of change in a, the system is unable to cope 
with the rapid changes. The rapid increase in a then drives the 
system state out of the basin of attraction (Fig. 2b) and away 
from the stable steady state. Notice that in this example the 

two classical measures for resilience identified in the previous 
section, i.e. the width and the persistence of a basin of attrac-
tion (Fig. 1a), are not affected by changes in a. Yet, high rates 
of change in a can still trigger a critical transition.

The critical transition shown in Fig. 1 occurs once a critical 
magnitude of change is exceeded, which can be derived by 
calculating the distance to the critical threshold value of b. In 
contrast, the transition depicted in Fig. 2 occurs when exter-
nal conditions (parameter a) change with a rate that exceeds 
a certain critical rate of change. To distinguish between the 
two types of transitions we will refer to them with the terms 
‘change-induced critical transition’ and ‘rate-induced critical 
transition’ respectively. Systems that are able and likely to 
display rate-induced critical transitions will be referred to as 
‘rate sensitive systems’.

Although it is quite intuitive that some ecosystems may 
not be able to respond timely to rapidly changing conditions, 
this concept has only recently received attention in theoretical 
ecology (Scheffer et al. 2008). In the field of neuroscience, 
however, rate sensitivity of neural cells is a well-known 
phenomenon. Neural cells are excitable, that is, if an electric 
current is passed through neural cell tissue excitation can 
occur, driving further transmission of the current. Excitation 
only occurs if the current exceeds a certain threshold value. 
However, accommodation occurs in response to the current, 
meaning that the critical threshold rises over time (Hill 
1936). As a result, excitation is rate dependent. A model 
that reproduces these dynamics is a modification of the  
Van der Pol oscillator (Van der Pol 1920, FitzHugh 1961) 
and shows that excitation can occur if sufficiently large 
”cathodal shock” is applied (FitzHugh 1961).

More recently, rate-induced critical transitions have 
received considerable attention in the mathematical literature 
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Figure 1. (a) Critical transition in a fold catastrophe model (Eq. 1) triggered by a gradual decrease in parameter b (db  dt  –0.1 and 
a  6). (b) Potential landscapes for different values of b, showing the vanishing of the basin of attraction as b declines. The coloured dots 
depict the system state at b  2 (green), b  1 (blue), b  0 (pink) and b  –0.1 (red). In (a) the gray lines give the stable (solid) and 
unstable (dashed) steady states of the system (i.e. assuming db/dt  0). See Supplementary material Appendix A for a derivation of the 
steady states and potential diagrams.
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et al. 2008), can be used to study rate sensitivity and to 
estimate critical rates of change. However, to obtain more 
general insights into the mechanisms that drive rate-induced 
transitions and to be able to derive explicit expressions for 
critical rates of change, analytical techniques are required. 
Unfortunately, an equivalent to steady state analysis that can 
be universally applied to study rate sensitive systems has not 
yet been developed. However, a comprehensive attempt to 
understand rate sensitivity in models with coupled fast-slow 
dynamics (such as the model by Rosenzweig and MacArthur 
1963 and described in Box 1) was introduced in a paper 
by Wieczorek et al. (2010). Their approach allows deriva-
tion of a critical rate of change through desingularization, 
time reversal and calculation of eigenvectors. Discussion of 
this approach goes beyond the scope of this paper, but in 
the following section we will present two less comprehen-
sive alternative approaches that allow us to analyse the rate-
induced critical transition in the model described by Eq. 1. 
These alternative approaches are introduced here to provide 
a general mechanistic understanding of rate-induced criti-
cal transitions and to enable discussion on the outstanding 
challenges that come with the analysis of rate sensitive 
ecological models.

Graphical analysis of Eq. 1
In Fig. 2 we showed that a rate-induced critical transition 
occurs in the model of Eq. 1 when the actual system state 
leaves the basin of attraction of the stable steady state, i.e. 
when it passes the unstable steady state of Eq. 1. This event 
is triggered by the movement of unstable steady state, which 
in turn is driven by the change in parameter a. Whether the 
unstable steady state is able to overtake the actual system 

(Wieczorek et al. 2010, Ashwin et al. 2012, Perryman 2015). 
A particularly well studied model is the model by (Luke 
and Cox 2011). Their model shows that rising atmospheric 
temperatures may trigger enhanced soil microbial respiration 
which may further heat soils eventually resulting in a sudden 
loss of soil carbon and increased CO2 emissions into the 
atmosphere. This non-linear response, which they refer to as 
the ‘compost-bomb instability’, only occurs if atmospheric 
temperatures rise quickly and is thus rate-induced.

In the ecological literature, a rate-induced critical transi-
tion was first described in a model study by Scheffer et al. 
(2008). In their model, which captures the dynamics of 
plants and herbivores, plants become less palatable as their 
biomass increases. An increase in plant productivity results 
in an increase of herbivore biomass, provided that the pro-
ductivity rises slowly compared to the response rate of the 
herbivores. If, on the other hand, productivity rises rapidly, 
the model shifts from a herbivore controlled state to a plant 
dominated state without herbivores (Scheffer et al. 2008). 
In Box 1 we show that rate-induced critical transitions can 
occur more generally in systems with coupled resource and 
consumer dynamics.

Analysis of rate sensitive models

As can be deduced from the example shown in the previous 
section and in Box 1, steady state analysis is insufficient 
to describe the dynamics of rate sensitive models to rapid 
changes in parameters as it cannot predict rate-induced 
critical transitions and therefore may overestimate resilience. 
Brute force numerical techniques, such as model runs with 
varying rates of change (e.g. Fig. 2a, Fig. 3b–c and Scheffer 

a

0

2

4

6

8

10

12

x

Stable steady state
Unstable steady state
da/dt = 0
da/dt = 1
da/dt = 2
da/dt = 3

(a)

–5 10
x

–5

–5

–50 2 4 6 8 0 5 10
x

(b)

a = 0

a = 2

a = 4

Time

a = 6

Figure 2. (a) Rate-induced critical transition in a fold catastrophe model (Eq. 1) triggered by a rapid increase in a. Increases in a can trigger 
a critical transition, provided that the rate of change in a is suffciently high. (b) The shape of the potential landscape is not affected by a, 
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(dashed) steady states of the system (i.e. assuming da/dt  0). See Supplementary material Appendix A for a derivation of the steady states 
and potential diagrams.
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Box 1

An ecological example: rate-induced overconsumption in the Rosenzweig–MacArthur model
An ecological model that can display rate-induced critical transitions is the model by Rosenzweig and MacArthur (1963) 
with slow consumer dynamics:

dR
dt

rR
R
K

aCR
R Rh

= −





−
+

1  (2)

dC
dt

eaCR
R R

mC
h

=
+

−






ε  (3)

Here R and C are resource and consumer densities respectively (e.g. in g m–2), r is the resource growth rate (in day–1), 
K is the carrying capacity (in g m–2), a is the maximum consumption rate (in day–1), Rh is the resource density at which 
consumption is half this rate (in g m–2), e is an effciency constant, m is the consumer mortality rate (in day–1) and e is 
a small dimensionless parameter that controls the difference in time scales between the fast resource dynamics and the 
slower consumer dynamics. Notice that what we consider here as consumers and resource is sometimes referred to as 
exploiter and victim (Rosenzweig 1971), predator and prey (Rosenzweig and MacArthur 1963) or herbivores and plants 
(Noy-Meir 1975) respectively.

Figure 3 shows how the model responds to declining resource growth rate r. The steady states of the system predict 
that a change in r affects the consumer density, but not the resource density, as shown in Fig. 3a. Model runs with 
declining r show something different (Fig. 3b–c). Since the response of consumers is slow, due to the low value of 
e, the actual consumer density lags behind its steady state (Fig. 3b). This means that consumption is higher than 
predicted with steady state analysis, thereby lowering the resource density (Fig. 3c). The response to a slow decline 
in r is rather linear, since the decrease in consumer density is rapid enough to diminish consumption to a level that 
enables high resource densities to be maintained. If, however, the rate of change in r is slightly faster, the consumer 
density does not decline fast enough and overconsumption occurs resulting in sudden depletion of the resource. The 
rate of the consumer dynamics (controlled by e), greatly affects the occurrence of rate-induced critical transitions in 
this model, since the system can tolerate more rapid decreases in r if consumers are able to change their density faster 
(high e).
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Figure 3. A rate-induced critical transition in the model by Rosenzweig and MacArthur (1963) (Eq. 2 and 3) triggered by a decreasing 
resource growth rate r. (a) Phase plane of the Rosenzweig– MacArthur model. The green lines are resource isoclines (dR/dt  0) for 
r  2.5 (dashed), r  2 (solid) and r  1.5 (dash-dotted). The blue lines are consumer isoclines (dC/dt  0). Circles indicate stable 
(filled) and unstable (open) steady states (dR/dt  dC/dt  0). The black arrows show the movement of the stable steady state as r 
decreases. The blue an green arrows give the direction of change if the system is not in a steady state. (b, c) Model response to slowly 
and less slowly declining r. In this figure r  1.5–2.5, a  1, e  1, K  10, m  0.75, e  0.01 and Rh  2. The model runs were 
initiated in the stable steady state of the system at r  5 (R  6, C  16).
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x x= ++
 ξ  (7)

with x a b
+ = +  (Supplementary material Appendix A). 

Rewriting gives ξ = − +x x ,  so that the change of the lag x 
over time can be written as:

d
dt

d x x
dt

dx
dt

d x
dt

b x a
d x
da

da
dt

b x a

ξ

ξ

=
−

= −

= − − −

= − + −

+

+

+

+

( )

( )

(









2

))2

2

2

−
+( )

= − + + −( ) −

= − +( ) −

d a b

da
da
dt

b a b a
da
dt

b b
da
dt

ξ

ξ

 (8)

For linear changes in a (i.e. constant da/dt) Eq. 8 becomes 
autonomous. This means that, unlike Eq. 1, it does not 
explicitly depend on the changing parameter a. Therefore, 
we can set dx/dt to zero to obtain the steady state of Eq. 8, 
or the ‘stead lag’ of x behind the steady state of Eq. 1.

Two steady lags can be found of which ξ+  is stable (see 
Supplementary material Appendix B):

ξ± = ± − −b
da
dt

b  (9)

This equation has no solution for da/dt  b. Indeed, Fig. 5 
shows that, in line with the analysis in the previous section 
and model runs of Fig. 2a, this model has a critical rate of 
increase for parameter a of:
da
dt

b=  (10)

above which the actual system state is unable to track the 
stable steady state. Notice that by rewriting in terms of x, 

state, can be assessed graphically by comparing the maxi-
mum response rate of the system under static conditions 
(i.e. the maximum value of dx/dt) with the movement rate of 
the unstable steady state, as shown in Fig. 4. This graphical 
comparison shows that the movement rate of the unstable 
steady state exceeds the maximum response rate of the sys-
tem if parameter a changes with a rate beyond a critical rate 
of change of da/dt  2.

This result can also be obtained analytically by deriv-
ing both the maximum response rate and the movement 
rate of the unstable steady state. The maximum of Eq. 1 
is located at x  a, meaning that the maximum response 
rate equals:

dx
dt

b x x b= − − =( )2  (4)

The unstable steady state is given by x a b
− = −  (Supple-

mentary material Appendix A) and its derivative to a  
equals 1. Thus, the moving rate of the unstable steady state 
is given by:

d x
dt

d x
da

da
dt

da
dt

 
− −= =  (5)

Equalizing Eq. 4 and 5 yields a critical rate of change in a 
of:
da
dt

b=  (6)

beyond which the unstable steady state is able to overtake the 
actual system state. Notice that both the graphical and the 
analytical result correspond with the model runs presented 
earlier in Fig. 2.

Steady lag analysis of Eq. 1
Figure 2a shows that under steady conditions (da/dt  0) 
the system can be assumed to reside in a stable steady state  
x  x‒, but that as parameter a changes over time (da/dt ≠ 
0) the actual state of the system starts to lag behind its stable 
steady state. The actual state of the system can then be writ-
ten as the sum of the stable steady state x‒ and the lag of the 
system state x:
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Figure 4. A rate-induced critical transition occurs in the model described by Eq. 1 if the movement rate the unstable steady state exceeds 
the maximum response rate of the system. (a) Dynamics in x under static conditions, for a  6 and b  2. Here x− is the stable steady state 
and x− is unstable steady state, which moves with a rate depicted in (b) as a changes.
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a changes, which is generally not the case for comprehensive 
ecological models. Applying this graphical approach on eco-
logical models could therefore lead to erroneous critical rates 
of change. Finally, the steady lag approach has its limitations, 
as it can only be applied to models with an autonomous lag 
equation (Eq. 8). For models other than Eq. 1, the lag gener-
ally depends on the changing parameter, meaning that the 
lag is explicitly time dependent and a steady lag cannot be 
assumed.

In the Supplementary material Appendix C and D we 
apply both analyses on the ecological model by Rosenz-
weig and MacArthur (1963, Box 1) to study whether the 
discussed limitations do indeed result in significant errors 
when applying the analyses to assess critical rates of change 
in parameters of ecological models. Both analyses yield a 
critical rate of change in parameter r of dr/dt  – 1.5  10–3 
day–2 or:
dr
dt

r
ea K R
K R

mh

h

=
−

−
−







ε
( )  (11)

This value indeed differs from the critical rate of change  
of dr/dt  –2  10–3 day–2 found through model runs  
(Fig. 3c). This suggests that, although helpful for identifying 
the general mechanisms behind rate sensitivity, the presented 
analyses can only be applied to a limited subset of models.

Identifying real rate sensitive ecosystems

While the critical thresholds that are responsible for change-
induced transitions can be found relatively easily using 
steady state analysis, critical rates of change are more difficult 
to detect, as pointed out in the previous section. As a result, 
the identification of rate sensitive models and ultimately of 
rate sensitive ecosystems will be more challenging. There are, 
however, some common features of rate sensitive models that 
may be useful in doing so, as we will discuss in this section.

In contrast to change-induced critical transitions, ecosys-
tems that respond slowly to environmental change are more 
sensitive to rate-induced critical transitions. This means 
that ecosystems with at least one slow state variable are 
more likely to exhibit rate-induced transitions. Such transi-
tions may however not significantly affect the slow variable 
(Hughes et al. 2013), but may be prominent in a fast state 
variable with which it interacts. In the model by Rosenzweig 
and MacArthur (1963, Box 1) for example, the slow con-
sumers fail to cope with their declining resource, leading to 
overconsumption and a collapse in resource density. Other 
examples are the model by Luke and Cox (2011) with slow 
soil carbon dynamics and fast soil temperature dynamics 
and the model by Scheffer et al. (2008) with slow herbivore 
and fast plant dynamics, discussed in section ’Rate-induced 
critical transitions’. In these models the fast variables have 
hump-shaped isoclines. This means that the fast variables are 
controlled by non-linear processes. In the model by Rosen-
zweig and MacArthur (1963) for instance, both the logistic 
growth of the resource and its consumption are non-linear 
processes and in the model by Luke and Cox (2011) the soil 
carbon decomposition rate increases exponentially with soil 
temperature. These examples suggest that ecosystems that 
have coupled slow and fast non-linear processes may be more 
likely to undergo rate-induced critical transitions.

the model reduces to the fold catastrophe model with da/dt 
being the driving parameter.

Understanding rate sensitivity of ecological models
The analyses of Eq. 1 presented above provide a number of 
key insights regarding the general mechanisms that could be 
responsible for rate-induced critical transitions in ecologi-
cal models and real ecosystems. First, the graphical analysis 
of section ‘Graphical analysis of Eq. 1’ suggests that rate-
induced critical transitions are likely to occur when the rate 
of environmental change is high relative to the maximum 
response rate of ecosystems (Fig. 4). Second, analysis of 
the lag of the system state behind its steady state revealed 
that rate-induced critical transitions are similar to change-
induced critical transitions, e.g. they can be described by 
the fold catastrophe model (Fig. 5), but are driven by rates, 
rather than magnitudes, of environmental change. Finally, 
both analyses suggest that rate-induced critical transitions 
occur once a critical rate of change is exceeded.

Although both analyses provide general mechanistic 
insights regarding rate sensitivity of models and possibly of 
real ecosystems, they are only of limited value when studying 
specific mechanisms that drive rate-induced critical transi-
tions in a particular ecosystem or in more comprehensive 
ecological models. First, the graphical approach of section 
‘Graphical analysis of Eq. 1’ can only be applied to models 
with one state variable, such as Eq. 1, or models with coupled 
fast–slow dynamics (Rosenzweig and MacArthur 1963, Box 
1) that can be reduced to a system with one state variable 
through a quasi-steady state approximation. Second, both 
the maximum response rate and the movement rate of the 
unstable steady state of Eq. 1 remain unaltered as parameter 

1 2 3
Rate of change da/dt

–3

–2

–1

la
g 

ξ

Steady lags of equation 1 with changing a

Critical
rate of
change

Figure 5. The model described by Eq. 1 lags in a way equivalent to 
the fold catastrophe model with the rate of change da/dt as driving 
parameter. The gray solid lines are stable steady lags and the dashed 
lines are unstable steady lags. The colored lines and dots correspond 
to the model runs shown in Fig. 2.
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Discussion and conclusions

Current anthropogenic environmental changes occur at 
unprecedented rates (Joos and Spahni 2008, Kaplan et al. 
2011, Klein Goldewijk et al. 2011). In this paper we presented 
and discussed models that suggest that, for some ecosystems, 
rates of environmental change may be too high to cope with, 
thereby triggering a new type of critical transition. These 
rate-induced critical transitions are challenging to analyse 
in ecological models, but can be understood in elementary 
models by applying graphical analyses or by studying the lag 
behind a system’s stable steady state. These analyses revealed 
that 1) rate-induced critical transitions occur if the rate of 
environmental change is high compared to the response rate 
of ecosystems, 2) rate-induced critical transitions are simi-
lar to change-induced critical transitions but are driven by 
rates, rather than magnitudes, of environmental change and 
3) rate-induced critical transitions occur once a critical rate 
of change is exceeded. Identification of rate-sensitive eco-
systems would also be challenging, but common features of 
rate-sensitive models suggest that ecosystems with coupled 
fast-slow dynamics, exhibiting repetitive catastrophic shifts 
or spatially periodic patterns are more likely to display rate-
induced critical transitions.

Although we have suggested a number of common 
features of rate sensitive models which may be useful in 
identification of rate sensitive ecosystems, disentangling 
change- and rate-induced critical transitions in observations 
would still be challenging. Indeed, to our knowledge no 
observations of rate-induced critical transitions in real eco-
systems have been reported. Rate dependent outcomes have 
however been reported in a number of experimental studies. 
Rate dependency is a well known problem for short-term 
experimental studies on the effect of the relatively gradual 
rise in atmospheric CO2 on ecosystem structure and func-
tioning (Luo and Reynolds 1999, Klironomos et al. 2005, 
Luo and Hui 2009). For example, Klironomos et al. (2005) 
have found that increasing the CO2 concentrations instantly 
from 350 to 550 ppm resulted in a significantly different soil 
mycorrhizal community structure, whereas the same mag-
nitude of change applied over a period of about six years 
had no significant effect. There is no reason to believe that 
such rate dependencies at the community level would have 
no effects at the ecosystem level, meaning that these experi-
ments do not rule out the possibility of rate sensitivity of real 
ecosystems.

By using ordinary differential equations to model eco-
systems, we implicitly assumed that ecosystems can only 
respond to environmental changes by adjusting the levels of 
their state variables. For example, consumers in the model 
by Rosenzweig and MacArthur (1963, Box 1), only respond 
to the declining resource density by lowering their own den-
sity. In real ecosystems however, populations are known to 
adapt to environmental changes in other ways too, namely 
by 1) evading to more suitable habitats or by adapting in 
situ through 2) phenotypic plasticity and/or through 3) 
micro-evolutionary adaptation (Holt 1990). The rates of 
these three alternative response mechanisms are bounded, 
potentially leading to additional critical rates of environ-
mental change. For example, Devictor et al. (2012) found 

Models with coupled fast–slow dynamics are also 
known to exhibit repetitive catastrophic shifts, as previ-
ously mentioned. These systems have the same properties 
as the rate sensitive systems described above, but are in an 
unstable regime. Ecosystems in which such cyclic dynamics 
have been observed may therefore be rate sensitive under 
slightly different environmental conditions. Observing such 
dynamics at one location may therefore be an indicator that 
elsewhere along an environmental gradient the ecosystem is 
rate sensitive. In coastal dune ecosystems for example, water 
repellency of soils results in nonlinear soil water dynamics 
(Dekker and Jungerius 1990, Dekker and Ritsema 1994). 
In these ecosystems the combination of slow plant dynam-
ics and soil water repellency is thought to drive repetitive 
catastrophic shifts under some conditions and to trigger 
rate-induced critical transitions in response to declining 
precipitation under other conditions (Siteur et al. 2016).

Recent studies suggest that ecosystems with spatially 
periodic patterns may exhibit rate dependent behaviour 
(Sherratt 2013, Siteur et al. 2014b, Chen et al. 2015). 
Such patterns are ubiquitously observed in arid ecosys-
tems (Deblauwe et al. 2008), which are currently under-
going rapid climatic changes (Tebaldi et al. 2006, Siteur 
et al. 2014a). In periodically patterned ecosystems patches 
of consumers (e.g. plants) compete for a limiting resource 
(e.g. water). As resource input declines, patches go extinct 
and the remaining patches rearrange to regain an optimal 
periodic pattern. If the rearrangement process occurs slowly 
with respect to the rate of decrease in resource input, a large 
fraction or even all of the patches may go extinct simulta-
neously. This is caused by a delayed transition, which forces 
the model to cross a so-called period-doubling bifurcation 
(Siteur et al. 2014b, Siero et al. 2015). Rate sensitivity of 
spatially extended models suggests that spatially periodic 
patterns could serve as an indicator of real rate sensitive 
ecosystems.

The common properties of rate sensitive models could 
be used to determine the ability of ecosystems to undergo 
rate-induced critical transitions. To assess their suscepti-
bility to rate-induced transitions, one could estimate the 
recovery rate of ecosystems to perturbations. As shown in 
Box 2 for the model described by Eq. 1, ecosystems can 
be expected to become slower in recovering from pertur-
bations when rates of change approach critical rates of 
change. When subject to natural variability, this could lead 
to increasing temporal autocorrelation and variance in an 
ecosystem’s state variables. In addition, low diversity and 
high connectivity are architectural features are known to 
make ecological networks susceptible to critical transitions 
(Scheffer et al. 2012). Finally, the susceptibility of ecosys-
tems to rate-induced critical transitions could be assessed 
using the mechanistic insights provided by the analyses 
in section ‘Analysis of rate sensitive models’. For example, 
maximum observed response rates in experiments or time 
series of real ecosystems could be used to assess the suscep-
tibility of ecosystems to rate-induced critical transitions. 
Note that these types of analyses are now already being 
applied to real ecosystems (Carpenter et al. 2011, 2014), 
and could be extended to specifically study rate-induced 
critical transitions.
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or may not cope with a magnitude of change depending 
on the time scale over which the change occurs. This sug-
gests that in some cases a broader definition of resilience 
that acknowledges critical rates of change would be more 
applicable.

The idea of alternative stable states and critical thresh-
olds in ecosystems has motivated formulation of precondi-
tions for human development on a global scale referred to 
as “planetary boundaries” (Rockström et al. 2009, Scheffer 
2015, Steffen et al. 2015). The proposed boundaries are 
however all critical levels (e.g. atmospheric carbon diox-
ide concentration) or rates controlling levels (e.g. the 
rate of phosphorous mining which controls phosphorous 
concentrations in the oceans). Rate sensitivity found in 
models suggests that, given the elevated rates of change 
in the environment that accompany human development, 
defining boundaries based on critical levels may not be 
enough to ensure a safe operating space. In order to define 
critical rates of change on ecosystem level or even on a 
global level and to identify rate sensitive systems, a better 
mechanistic understanding of rate-induced critical transi-
tions is needed.      
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that butterfly and bird populations in Europe do not meet 
the required displacement velocities to track shifting tem-
peratures, and are building up what they call a “climatic 
debt”. Also micro-evolutionary adaptation has a limited 
rate, and theory suggests that critical rates of environmen-
tal change exist beyond which selective pressures become 
too high for positive population growth to be maintained 
(Lynch and Lande 1993, Bürger and Lynch 1995, Chevin 
et al. 2010). In order to predict the effect of rapid envi-
ronmental changes on ecosystems, both the mechanisms 
behind rate-induced critical transitions on ecosystem level 
and behind the alternative responses on population level 
need to be understood.

The focus of steady-state analysis on long-term asymp-
totic behaviour of ecosystems is sometimes inappropri-
ate and does not always match with ecologically relevant 
time scales (Hastings 2004, Hughes et al. 2013). Our 
study shows that steady state analysis is also insufficient to 
study rate-induced critical transitions. Steady state analy-
sis has shaped the common view on concepts like ecologi-
cal resilience, as we have pointed out earlier. Definitions 
of resilience (Holling 1973) are based on the view that 
ecosystems may shift to alternative dynamics when (exter-
nal) change or perturbations drive ecosystems beyond a 
critical threshold. Hence a critical magnitudes of external 
change and disturbances can be regarded as measures for 
resilience (Fig. 1a). However, these definitions and mea-
sures do not apply to rate sensitive ecosystems, which may 

Box 2

Generic early-warning signals for rate-induced critical transitions
As systems approach critical thresholds, they become increasingly slow in recovering from perturbations (Wissel 1984, 
Scheffer et al. 2009). This phenomenon, known as “critical slowing down”, is expected to result in increasing variance 
and autocorrelation in systems that are subject to natural variability. Figure 6 shows that these early-warning signals also 
precede the rate-induced critical transition found for the model of Eq. 1. The increases in recovery time, autocorrelation 
and variance are both predicted by the steady lag analysis (red curves) and model runs (blue crosses), but can not be 
regarded as trivial since attening of the potential landscape associated with critical slowing down (Scheffer et al. 2009) 
does not occur as the rate of change approaches its critical value (Fig. 2b).
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Figure 6. Increasing recovery time from perturbations (a), lag-1 auto-correlation (b) and variance (c) in state variable x of Eq. 1 as the 
rate of change in paramter a approaches a critical rate of change of da/dt  2(  b). The crosses represent the value of each statistic  
on detrented time series of x with a length of t  2000. State variable x was perturbed with Gaussian noise with a standard deviation 
of s  0.1, which was applied with an interval of ∆t  0.2. The curves are derived by linearization around the steady lags.  

The half time is given by th = 





1 1
2λ

ln ,  with λ = − −2 b r  (Supplementary material Appendix B), the auto-correlation is given by 

α λ= ∆e t  and the variance by VAR =
σ

1− α2

2
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